MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlk3lem1 Structured version   Visualization version   GIF version

Theorem numclwwlk3lem1 30366
Description: Lemma 2 for numclwwlk3 30369. (Contributed by Alexander van der Vekens, 26-Aug-2018.) (Proof shortened by AV, 23-Jan-2022.)
Assertion
Ref Expression
numclwwlk3lem1 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝐾↑(𝑁 − 2)) − 𝑌) + (𝐾 · 𝑌)) = (((𝐾 − 1) · 𝑌) + (𝐾↑(𝑁 − 2))))

Proof of Theorem numclwwlk3lem1
StepHypRef Expression
1 uznn0sub 12775 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 − 2) ∈ ℕ0)
2 expcl 13990 . . . . 5 ((𝐾 ∈ ℂ ∧ (𝑁 − 2) ∈ ℕ0) → (𝐾↑(𝑁 − 2)) ∈ ℂ)
31, 2sylan2 593 . . . 4 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → (𝐾↑(𝑁 − 2)) ∈ ℂ)
433adant2 1131 . . 3 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → (𝐾↑(𝑁 − 2)) ∈ ℂ)
5 simp2 1137 . . 3 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑌 ∈ ℂ)
6 mulcl 11099 . . . 4 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝐾 · 𝑌) ∈ ℂ)
763adant3 1132 . . 3 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → (𝐾 · 𝑌) ∈ ℂ)
84, 5, 7subadd23d 11503 . 2 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝐾↑(𝑁 − 2)) − 𝑌) + (𝐾 · 𝑌)) = ((𝐾↑(𝑁 − 2)) + ((𝐾 · 𝑌) − 𝑌)))
97, 5subcld 11481 . . 3 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐾 · 𝑌) − 𝑌) ∈ ℂ)
104, 9addcomd 11324 . 2 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐾↑(𝑁 − 2)) + ((𝐾 · 𝑌) − 𝑌)) = (((𝐾 · 𝑌) − 𝑌) + (𝐾↑(𝑁 − 2))))
11 simp1 1136 . . . 4 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → 𝐾 ∈ ℂ)
1211, 5mulsubfacd 11587 . . 3 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐾 · 𝑌) − 𝑌) = ((𝐾 − 1) · 𝑌))
1312oveq1d 7369 . 2 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝐾 · 𝑌) − 𝑌) + (𝐾↑(𝑁 − 2))) = (((𝐾 − 1) · 𝑌) + (𝐾↑(𝑁 − 2))))
148, 10, 133eqtrd 2772 1 ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ‘2)) → (((𝐾↑(𝑁 − 2)) − 𝑌) + (𝐾 · 𝑌)) = (((𝐾 − 1) · 𝑌) + (𝐾↑(𝑁 − 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cfv 6488  (class class class)co 7354  cc 11013  1c1 11016   + caddc 11018   · cmul 11020  cmin 11353  2c2 12189  0cn0 12390  cuz 12740  cexp 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-seq 13913  df-exp 13973
This theorem is referenced by:  numclwwlk3  30369
  Copyright terms: Public domain W3C validator