| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwwlk3lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for numclwwlk3 30363. (Contributed by Alexander van der Vekens, 26-Aug-2018.) (Proof shortened by AV, 23-Jan-2022.) |
| Ref | Expression |
|---|---|
| numclwwlk3lem1 | ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝐾↑(𝑁 − 2)) − 𝑌) + (𝐾 · 𝑌)) = (((𝐾 − 1) · 𝑌) + (𝐾↑(𝑁 − 2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uznn0sub 12771 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 2) ∈ ℕ0) | |
| 2 | expcl 13986 | . . . . 5 ⊢ ((𝐾 ∈ ℂ ∧ (𝑁 − 2) ∈ ℕ0) → (𝐾↑(𝑁 − 2)) ∈ ℂ) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐾 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝐾↑(𝑁 − 2)) ∈ ℂ) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝐾↑(𝑁 − 2)) ∈ ℂ) |
| 5 | simp2 1137 | . . 3 ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝑌 ∈ ℂ) | |
| 6 | mulcl 11090 | . . . 4 ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ) → (𝐾 · 𝑌) ∈ ℂ) | |
| 7 | 6 | 3adant3 1132 | . . 3 ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝐾 · 𝑌) ∈ ℂ) |
| 8 | 4, 5, 7 | subadd23d 11494 | . 2 ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝐾↑(𝑁 − 2)) − 𝑌) + (𝐾 · 𝑌)) = ((𝐾↑(𝑁 − 2)) + ((𝐾 · 𝑌) − 𝑌))) |
| 9 | 7, 5 | subcld 11472 | . . 3 ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐾 · 𝑌) − 𝑌) ∈ ℂ) |
| 10 | 4, 9 | addcomd 11315 | . 2 ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐾↑(𝑁 − 2)) + ((𝐾 · 𝑌) − 𝑌)) = (((𝐾 · 𝑌) − 𝑌) + (𝐾↑(𝑁 − 2)))) |
| 11 | simp1 1136 | . . . 4 ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → 𝐾 ∈ ℂ) | |
| 12 | 11, 5 | mulsubfacd 11578 | . . 3 ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝐾 · 𝑌) − 𝑌) = ((𝐾 − 1) · 𝑌)) |
| 13 | 12 | oveq1d 7361 | . 2 ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝐾 · 𝑌) − 𝑌) + (𝐾↑(𝑁 − 2))) = (((𝐾 − 1) · 𝑌) + (𝐾↑(𝑁 − 2)))) |
| 14 | 8, 10, 13 | 3eqtrd 2770 | 1 ⊢ ((𝐾 ∈ ℂ ∧ 𝑌 ∈ ℂ ∧ 𝑁 ∈ (ℤ≥‘2)) → (((𝐾↑(𝑁 − 2)) − 𝑌) + (𝐾 · 𝑌)) = (((𝐾 − 1) · 𝑌) + (𝐾↑(𝑁 − 2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 1c1 11007 + caddc 11009 · cmul 11011 − cmin 11344 2c2 12180 ℕ0cn0 12381 ℤ≥cuz 12732 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: numclwwlk3 30363 |
| Copyright terms: Public domain | W3C validator |