![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlkovh0 | Structured version Visualization version GIF version |
Description: Value of operation 𝐻, mapping a vertex 𝑣 and an integer 𝑛 greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in [Huneke] p. 2. (Contributed by AV, 1-May-2022.) |
Ref | Expression |
---|---|
numclwwlkovh.h | ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) |
Ref | Expression |
---|---|
numclwwlkovh0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 6914 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → (𝑣(ClWWalksNOn‘𝐺)𝑛) = (𝑋(ClWWalksNOn‘𝐺)𝑁)) | |
2 | oveq1 6912 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (𝑛 − 2) = (𝑁 − 2)) | |
3 | 2 | adantl 475 | . . . . 5 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → (𝑛 − 2) = (𝑁 − 2)) |
4 | 3 | fveq2d 6437 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2))) |
5 | simpl 476 | . . . 4 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → 𝑣 = 𝑋) | |
6 | 4, 5 | neeq12d 3060 | . . 3 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → ((𝑤‘(𝑛 − 2)) ≠ 𝑣 ↔ (𝑤‘(𝑁 − 2)) ≠ 𝑋)) |
7 | 1, 6 | rabeqbidv 3408 | . 2 ⊢ ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) → {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋}) |
8 | numclwwlkovh.h | . 2 ⊢ 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (ℤ≥‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣}) | |
9 | ovex 6937 | . . 3 ⊢ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ V | |
10 | 9 | rabex 5037 | . 2 ⊢ {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∈ V |
11 | 7, 8, 10 | ovmpt2a 7051 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 {crab 3121 ‘cfv 6123 (class class class)co 6905 ↦ cmpt2 6907 − cmin 10585 2c2 11406 ℤ≥cuz 11968 ClWWalksNOncclwwlknon 27458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-iota 6086 df-fun 6125 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 |
This theorem is referenced by: numclwwlkovh 27776 numclwwlk3lem2lem 27798 numclwwlk3lem2 27799 |
Copyright terms: Public domain | W3C validator |