MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovh0 Structured version   Visualization version   GIF version

Theorem numclwwlkovh0 30301
Description: Value of operation 𝐻, mapping a vertex 𝑣 and an integer 𝑛 greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in [Huneke] p. 2. (Contributed by AV, 1-May-2022.)
Hypothesis
Ref Expression
numclwwlkovh.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
Assertion
Ref Expression
numclwwlkovh0 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝐻(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlkovh0
StepHypRef Expression
1 oveq12 7396 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑣(ClWWalksNOn‘𝐺)𝑛) = (𝑋(ClWWalksNOn‘𝐺)𝑁))
2 oveq1 7394 . . . . . 6 (𝑛 = 𝑁 → (𝑛 − 2) = (𝑁 − 2))
32adantl 481 . . . . 5 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑛 − 2) = (𝑁 − 2))
43fveq2d 6862 . . . 4 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑤‘(𝑛 − 2)) = (𝑤‘(𝑁 − 2)))
5 simpl 482 . . . 4 ((𝑣 = 𝑋𝑛 = 𝑁) → 𝑣 = 𝑋)
64, 5neeq12d 2986 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → ((𝑤‘(𝑛 − 2)) ≠ 𝑣 ↔ (𝑤‘(𝑁 − 2)) ≠ 𝑋))
71, 6rabeqbidv 3424 . 2 ((𝑣 = 𝑋𝑛 = 𝑁) → {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣} = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
8 numclwwlkovh.h . 2 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
9 ovex 7420 . . 3 (𝑋(ClWWalksNOn‘𝐺)𝑁) ∈ V
109rabex 5294 . 2 {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋} ∈ V
117, 8, 10ovmpoa 7544 1 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → (𝑋𝐻𝑁) = {𝑤 ∈ (𝑋(ClWWalksNOn‘𝐺)𝑁) ∣ (𝑤‘(𝑁 − 2)) ≠ 𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3405  cfv 6511  (class class class)co 7387  cmpo 7389  cmin 11405  2c2 12241  cuz 12793  ClWWalksNOncclwwlknon 30016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392
This theorem is referenced by:  numclwwlkovh  30302  numclwwlk3lem2lem  30312  numclwwlk3lem2  30313
  Copyright terms: Public domain W3C validator