![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlkovh0 | Structured version Visualization version GIF version |
Description: Value of operation π», mapping a vertex π£ and an integer π greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in [Huneke] p. 2. (Contributed by AV, 1-May-2022.) |
Ref | Expression |
---|---|
numclwwlkovh.h | β’ π» = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π£}) |
Ref | Expression |
---|---|
numclwwlkovh0 | β’ ((π β π β§ π β (β€β₯β2)) β (ππ»π) = {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 7422 | . . 3 β’ ((π£ = π β§ π = π) β (π£(ClWWalksNOnβπΊ)π) = (π(ClWWalksNOnβπΊ)π)) | |
2 | oveq1 7420 | . . . . . 6 β’ (π = π β (π β 2) = (π β 2)) | |
3 | 2 | adantl 480 | . . . . 5 β’ ((π£ = π β§ π = π) β (π β 2) = (π β 2)) |
4 | 3 | fveq2d 6894 | . . . 4 β’ ((π£ = π β§ π = π) β (π€β(π β 2)) = (π€β(π β 2))) |
5 | simpl 481 | . . . 4 β’ ((π£ = π β§ π = π) β π£ = π) | |
6 | 4, 5 | neeq12d 2992 | . . 3 β’ ((π£ = π β§ π = π) β ((π€β(π β 2)) β π£ β (π€β(π β 2)) β π)) |
7 | 1, 6 | rabeqbidv 3437 | . 2 β’ ((π£ = π β§ π = π) β {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π£} = {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π}) |
8 | numclwwlkovh.h | . 2 β’ π» = (π£ β π, π β (β€β₯β2) β¦ {π€ β (π£(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π£}) | |
9 | ovex 7446 | . . 3 β’ (π(ClWWalksNOnβπΊ)π) β V | |
10 | 9 | rabex 5330 | . 2 β’ {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π} β V |
11 | 7, 8, 10 | ovmpoa 7570 | 1 β’ ((π β π β§ π β (β€β₯β2)) β (ππ»π) = {π€ β (π(ClWWalksNOnβπΊ)π) β£ (π€β(π β 2)) β π}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 {crab 3419 βcfv 6543 (class class class)co 7413 β cmpo 7415 β cmin 11469 2c2 12292 β€β₯cuz 12847 ClWWalksNOncclwwlknon 29936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 |
This theorem is referenced by: numclwwlkovh 30222 numclwwlk3lem2lem 30232 numclwwlk3lem2 30233 |
Copyright terms: Public domain | W3C validator |