MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovh0 Structured version   Visualization version   GIF version

Theorem numclwwlkovh0 30221
Description: Value of operation 𝐻, mapping a vertex 𝑣 and an integer 𝑛 greater than 1 to the "closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v" according to definition 7 in [Huneke] p. 2. (Contributed by AV, 1-May-2022.)
Hypothesis
Ref Expression
numclwwlkovh.h 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})
Assertion
Ref Expression
numclwwlkovh0 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑋𝐻𝑁) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑛,𝑁,𝑣,𝑀   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑀
Allowed substitution hints:   𝐻(𝑀,𝑣,𝑛)   𝑉(𝑀)

Proof of Theorem numclwwlkovh0
StepHypRef Expression
1 oveq12 7422 . . 3 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) = (𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
2 oveq1 7420 . . . . . 6 (𝑛 = 𝑁 β†’ (𝑛 βˆ’ 2) = (𝑁 βˆ’ 2))
32adantl 480 . . . . 5 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ (𝑛 βˆ’ 2) = (𝑁 βˆ’ 2))
43fveq2d 6894 . . . 4 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ (π‘€β€˜(𝑛 βˆ’ 2)) = (π‘€β€˜(𝑁 βˆ’ 2)))
5 simpl 481 . . . 4 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ 𝑣 = 𝑋)
64, 5neeq12d 2992 . . 3 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ ((π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣 ↔ (π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋))
71, 6rabeqbidv 3437 . 2 ((𝑣 = 𝑋 ∧ 𝑛 = 𝑁) β†’ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣} = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋})
8 numclwwlkovh.h . 2 𝐻 = (𝑣 ∈ 𝑉, 𝑛 ∈ (β„€β‰₯β€˜2) ↦ {𝑀 ∈ (𝑣(ClWWalksNOnβ€˜πΊ)𝑛) ∣ (π‘€β€˜(𝑛 βˆ’ 2)) β‰  𝑣})
9 ovex 7446 . . 3 (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∈ V
109rabex 5330 . 2 {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋} ∈ V
117, 8, 10ovmpoa 7570 1 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (β„€β‰₯β€˜2)) β†’ (𝑋𝐻𝑁) = {𝑀 ∈ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ∣ (π‘€β€˜(𝑁 βˆ’ 2)) β‰  𝑋})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  {crab 3419  β€˜cfv 6543  (class class class)co 7413   ∈ cmpo 7415   βˆ’ cmin 11469  2c2 12292  β„€β‰₯cuz 12847  ClWWalksNOncclwwlknon 29936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418
This theorem is referenced by:  numclwwlkovh  30222  numclwwlk3lem2lem  30232  numclwwlk3lem2  30233
  Copyright terms: Public domain W3C validator