Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numclwlk1 | Structured version Visualization version GIF version |
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0. (Contributed by AV, 23-May-2022.) |
Ref | Expression |
---|---|
numclwlk1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
numclwlk1.c | ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} |
numclwlk1.f | ⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd ‘𝑤)‘0) = 𝑋)} |
Ref | Expression |
---|---|
numclwlk1 | ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzp1 12548 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 = 2 ∨ 𝑁 ∈ (ℤ≥‘(2 + 1)))) | |
2 | numclwlk1.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | numclwlk1.c | . . . . . . . 8 ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} | |
4 | numclwlk1.f | . . . . . . . 8 ⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd ‘𝑤)‘0) = 𝑋)} | |
5 | 2, 3, 4 | numclwlk1lem1 28634 | . . . . . . 7 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
6 | 5 | expcom 413 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 2) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) |
7 | 6 | expcom 413 | . . . . 5 ⊢ (𝑁 = 2 → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
8 | 2, 3, 4 | numclwlk1lem2 28635 | . . . . . . . 8 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
9 | 8 | expcom 413 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) |
10 | 9 | expcom 413 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
11 | 2p1e3 12045 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
12 | 11 | fveq2i 6759 | . . . . . 6 ⊢ (ℤ≥‘(2 + 1)) = (ℤ≥‘3) |
13 | 10, 12 | eleq2s 2857 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘(2 + 1)) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
14 | 7, 13 | jaoi 853 | . . . 4 ⊢ ((𝑁 = 2 ∨ 𝑁 ∈ (ℤ≥‘(2 + 1))) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
15 | 1, 14 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
16 | 15 | impcom 407 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) |
17 | 16 | impcom 407 | 1 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 Fincfn 8691 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 2c2 11958 3c3 11959 ℤ≥cuz 12511 ♯chash 13972 Vtxcvtx 27269 RegUSGraph crusgr 27826 ClWalkscclwlks 28039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-s2 14489 df-vtx 27271 df-iedg 27272 df-edg 27321 df-uhgr 27331 df-ushgr 27332 df-upgr 27355 df-umgr 27356 df-uspgr 27423 df-usgr 27424 df-fusgr 27587 df-nbgr 27603 df-vtxdg 27736 df-rgr 27827 df-rusgr 27828 df-wlks 27869 df-clwlks 28040 df-wwlks 28096 df-wwlksn 28097 df-clwwlk 28247 df-clwwlkn 28290 df-clwwlknon 28353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |