![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwlk1 | Structured version Visualization version GIF version |
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since πΊ is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0. (Contributed by AV, 23-May-2022.) |
Ref | Expression |
---|---|
numclwlk1.v | β’ π = (VtxβπΊ) |
numclwlk1.c | β’ πΆ = {π€ β (ClWalksβπΊ) β£ ((β―β(1st βπ€)) = π β§ ((2nd βπ€)β0) = π β§ ((2nd βπ€)β(π β 2)) = π)} |
numclwlk1.f | β’ πΉ = {π€ β (ClWalksβπΊ) β£ ((β―β(1st βπ€)) = (π β 2) β§ ((2nd βπ€)β0) = π)} |
Ref | Expression |
---|---|
numclwlk1 | β’ (((π β Fin β§ πΊ RegUSGraph πΎ) β§ (π β π β§ π β (β€β₯β2))) β (β―βπΆ) = (πΎ Β· (β―βπΉ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzp1 12859 | . . . 4 β’ (π β (β€β₯β2) β (π = 2 β¨ π β (β€β₯β(2 + 1)))) | |
2 | numclwlk1.v | . . . . . . . 8 β’ π = (VtxβπΊ) | |
3 | numclwlk1.c | . . . . . . . 8 β’ πΆ = {π€ β (ClWalksβπΊ) β£ ((β―β(1st βπ€)) = π β§ ((2nd βπ€)β0) = π β§ ((2nd βπ€)β(π β 2)) = π)} | |
4 | numclwlk1.f | . . . . . . . 8 β’ πΉ = {π€ β (ClWalksβπΊ) β£ ((β―β(1st βπ€)) = (π β 2) β§ ((2nd βπ€)β0) = π)} | |
5 | 2, 3, 4 | numclwlk1lem1 29611 | . . . . . . 7 β’ (((π β Fin β§ πΊ RegUSGraph πΎ) β§ (π β π β§ π = 2)) β (β―βπΆ) = (πΎ Β· (β―βπΉ))) |
6 | 5 | expcom 414 | . . . . . 6 β’ ((π β π β§ π = 2) β ((π β Fin β§ πΊ RegUSGraph πΎ) β (β―βπΆ) = (πΎ Β· (β―βπΉ)))) |
7 | 6 | expcom 414 | . . . . 5 β’ (π = 2 β (π β π β ((π β Fin β§ πΊ RegUSGraph πΎ) β (β―βπΆ) = (πΎ Β· (β―βπΉ))))) |
8 | 2, 3, 4 | numclwlk1lem2 29612 | . . . . . . . 8 β’ (((π β Fin β§ πΊ RegUSGraph πΎ) β§ (π β π β§ π β (β€β₯β3))) β (β―βπΆ) = (πΎ Β· (β―βπΉ))) |
9 | 8 | expcom 414 | . . . . . . 7 β’ ((π β π β§ π β (β€β₯β3)) β ((π β Fin β§ πΊ RegUSGraph πΎ) β (β―βπΆ) = (πΎ Β· (β―βπΉ)))) |
10 | 9 | expcom 414 | . . . . . 6 β’ (π β (β€β₯β3) β (π β π β ((π β Fin β§ πΊ RegUSGraph πΎ) β (β―βπΆ) = (πΎ Β· (β―βπΉ))))) |
11 | 2p1e3 12350 | . . . . . . 7 β’ (2 + 1) = 3 | |
12 | 11 | fveq2i 6891 | . . . . . 6 β’ (β€β₯β(2 + 1)) = (β€β₯β3) |
13 | 10, 12 | eleq2s 2851 | . . . . 5 β’ (π β (β€β₯β(2 + 1)) β (π β π β ((π β Fin β§ πΊ RegUSGraph πΎ) β (β―βπΆ) = (πΎ Β· (β―βπΉ))))) |
14 | 7, 13 | jaoi 855 | . . . 4 β’ ((π = 2 β¨ π β (β€β₯β(2 + 1))) β (π β π β ((π β Fin β§ πΊ RegUSGraph πΎ) β (β―βπΆ) = (πΎ Β· (β―βπΉ))))) |
15 | 1, 14 | syl 17 | . . 3 β’ (π β (β€β₯β2) β (π β π β ((π β Fin β§ πΊ RegUSGraph πΎ) β (β―βπΆ) = (πΎ Β· (β―βπΉ))))) |
16 | 15 | impcom 408 | . 2 β’ ((π β π β§ π β (β€β₯β2)) β ((π β Fin β§ πΊ RegUSGraph πΎ) β (β―βπΆ) = (πΎ Β· (β―βπΉ)))) |
17 | 16 | impcom 408 | 1 β’ (((π β Fin β§ πΊ RegUSGraph πΎ) β§ (π β π β§ π β (β€β₯β2))) β (β―βπΆ) = (πΎ Β· (β―βπΉ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β¨ wo 845 β§ w3a 1087 = wceq 1541 β wcel 2106 {crab 3432 class class class wbr 5147 βcfv 6540 (class class class)co 7405 1st c1st 7969 2nd c2nd 7970 Fincfn 8935 0cc0 11106 1c1 11107 + caddc 11109 Β· cmul 11111 β cmin 11440 2c2 12263 3c3 12264 β€β₯cuz 12818 β―chash 14286 Vtxcvtx 28245 RegUSGraph crusgr 28802 ClWalkscclwlks 29016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-rp 12971 df-xadd 13089 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-word 14461 df-lsw 14509 df-concat 14517 df-s1 14542 df-substr 14587 df-pfx 14617 df-s2 14795 df-vtx 28247 df-iedg 28248 df-edg 28297 df-uhgr 28307 df-ushgr 28308 df-upgr 28331 df-umgr 28332 df-uspgr 28399 df-usgr 28400 df-fusgr 28563 df-nbgr 28579 df-vtxdg 28712 df-rgr 28803 df-rusgr 28804 df-wlks 28845 df-clwlks 29017 df-wwlks 29073 df-wwlksn 29074 df-clwwlk 29224 df-clwwlkn 29267 df-clwwlknon 29330 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |