Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numclwlk1 | Structured version Visualization version GIF version |
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0. (Contributed by AV, 23-May-2022.) |
Ref | Expression |
---|---|
numclwlk1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
numclwlk1.c | ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} |
numclwlk1.f | ⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd ‘𝑤)‘0) = 𝑋)} |
Ref | Expression |
---|---|
numclwlk1 | ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzp1 12601 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 = 2 ∨ 𝑁 ∈ (ℤ≥‘(2 + 1)))) | |
2 | numclwlk1.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | numclwlk1.c | . . . . . . . 8 ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} | |
4 | numclwlk1.f | . . . . . . . 8 ⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd ‘𝑤)‘0) = 𝑋)} | |
5 | 2, 3, 4 | numclwlk1lem1 28712 | . . . . . . 7 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
6 | 5 | expcom 413 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 2) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) |
7 | 6 | expcom 413 | . . . . 5 ⊢ (𝑁 = 2 → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
8 | 2, 3, 4 | numclwlk1lem2 28713 | . . . . . . . 8 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
9 | 8 | expcom 413 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) |
10 | 9 | expcom 413 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
11 | 2p1e3 12098 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
12 | 11 | fveq2i 6771 | . . . . . 6 ⊢ (ℤ≥‘(2 + 1)) = (ℤ≥‘3) |
13 | 10, 12 | eleq2s 2858 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘(2 + 1)) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
14 | 7, 13 | jaoi 853 | . . . 4 ⊢ ((𝑁 = 2 ∨ 𝑁 ∈ (ℤ≥‘(2 + 1))) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
15 | 1, 14 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
16 | 15 | impcom 407 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) |
17 | 16 | impcom 407 | 1 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 {crab 3069 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 1st c1st 7815 2nd c2nd 7816 Fincfn 8707 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 − cmin 11188 2c2 12011 3c3 12012 ℤ≥cuz 12564 ♯chash 14025 Vtxcvtx 27347 RegUSGraph crusgr 27904 ClWalkscclwlks 28117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-oadd 8285 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-rp 12713 df-xadd 12831 df-fz 13222 df-fzo 13365 df-seq 13703 df-exp 13764 df-hash 14026 df-word 14199 df-lsw 14247 df-concat 14255 df-s1 14282 df-substr 14335 df-pfx 14365 df-s2 14542 df-vtx 27349 df-iedg 27350 df-edg 27399 df-uhgr 27409 df-ushgr 27410 df-upgr 27433 df-umgr 27434 df-uspgr 27501 df-usgr 27502 df-fusgr 27665 df-nbgr 27681 df-vtxdg 27814 df-rgr 27905 df-rusgr 27906 df-wlks 27947 df-clwlks 28118 df-wwlks 28174 df-wwlksn 28175 df-clwwlk 28325 df-clwwlkn 28368 df-clwwlknon 28431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |