Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1 Structured version   Visualization version   GIF version

Theorem numclwlk1 28162
 Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0. (Contributed by AV, 23-May-2022.)
Hypotheses
Ref Expression
numclwlk1.v 𝑉 = (Vtx‘𝐺)
numclwlk1.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
numclwlk1.f 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
Assertion
Ref Expression
numclwlk1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑁   𝑤,𝑉   𝑤,𝑋   𝑤,𝐶   𝑤,𝐹

Proof of Theorem numclwlk1
StepHypRef Expression
1 uzp1 12279 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 = 2 ∨ 𝑁 ∈ (ℤ‘(2 + 1))))
2 numclwlk1.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
3 numclwlk1.c . . . . . . . 8 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
4 numclwlk1.f . . . . . . . 8 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
52, 3, 4numclwlk1lem1 28160 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
65expcom 417 . . . . . 6 ((𝑋𝑉𝑁 = 2) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))
76expcom 417 . . . . 5 (𝑁 = 2 → (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))))
82, 3, 4numclwlk1lem2 28161 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
98expcom 417 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))
109expcom 417 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))))
11 2p1e3 11779 . . . . . . 7 (2 + 1) = 3
1211fveq2i 6665 . . . . . 6 (ℤ‘(2 + 1)) = (ℤ‘3)
1310, 12eleq2s 2934 . . . . 5 (𝑁 ∈ (ℤ‘(2 + 1)) → (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))))
147, 13jaoi 854 . . . 4 ((𝑁 = 2 ∨ 𝑁 ∈ (ℤ‘(2 + 1))) → (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))))
151, 14syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))))
1615impcom 411 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))
1716impcom 411 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  {crab 3137   class class class wbr 5053  ‘cfv 6344  (class class class)co 7150  1st c1st 7683  2nd c2nd 7684  Fincfn 8506  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541   − cmin 10869  2c2 11692  3c3 11693  ℤ≥cuz 12243  ♯chash 13698  Vtxcvtx 26795   RegUSGraph crusgr 27352  ClWalkscclwlks 27565 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-er 8286  df-map 8405  df-pm 8406  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-dju 9328  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-3 11701  df-n0 11898  df-xnn0 11968  df-z 11982  df-uz 12244  df-rp 12390  df-xadd 12508  df-fz 12898  df-fzo 13041  df-seq 13377  df-exp 13438  df-hash 13699  df-word 13870  df-lsw 13918  df-concat 13926  df-s1 13953  df-substr 14006  df-pfx 14036  df-s2 14213  df-vtx 26797  df-iedg 26798  df-edg 26847  df-uhgr 26857  df-ushgr 26858  df-upgr 26881  df-umgr 26882  df-uspgr 26949  df-usgr 26950  df-fusgr 27113  df-nbgr 27129  df-vtxdg 27262  df-rgr 27353  df-rusgr 27354  df-wlks 27395  df-clwlks 27566  df-wwlks 27622  df-wwlksn 27623  df-clwwlk 27773  df-clwwlkn 27816  df-clwwlknon 27879 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator