![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwlk1 | Structured version Visualization version GIF version |
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0. (Contributed by AV, 23-May-2022.) |
Ref | Expression |
---|---|
numclwlk1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
numclwlk1.c | ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} |
numclwlk1.f | ⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd ‘𝑤)‘0) = 𝑋)} |
Ref | Expression |
---|---|
numclwlk1 | ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzp1 12917 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 = 2 ∨ 𝑁 ∈ (ℤ≥‘(2 + 1)))) | |
2 | numclwlk1.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | numclwlk1.c | . . . . . . . 8 ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} | |
4 | numclwlk1.f | . . . . . . . 8 ⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd ‘𝑤)‘0) = 𝑋)} | |
5 | 2, 3, 4 | numclwlk1lem1 30398 | . . . . . . 7 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
6 | 5 | expcom 413 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 2) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) |
7 | 6 | expcom 413 | . . . . 5 ⊢ (𝑁 = 2 → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
8 | 2, 3, 4 | numclwlk1lem2 30399 | . . . . . . . 8 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
9 | 8 | expcom 413 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) |
10 | 9 | expcom 413 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
11 | 2p1e3 12406 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
12 | 11 | fveq2i 6910 | . . . . . 6 ⊢ (ℤ≥‘(2 + 1)) = (ℤ≥‘3) |
13 | 10, 12 | eleq2s 2857 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘(2 + 1)) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
14 | 7, 13 | jaoi 857 | . . . 4 ⊢ ((𝑁 = 2 ∨ 𝑁 ∈ (ℤ≥‘(2 + 1))) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
15 | 1, 14 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) |
16 | 15 | impcom 407 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) |
17 | 16 | impcom 407 | 1 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {crab 3433 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 2nd c2nd 8012 Fincfn 8984 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 − cmin 11490 2c2 12319 3c3 12320 ℤ≥cuz 12876 ♯chash 14366 Vtxcvtx 29028 RegUSGraph crusgr 29589 ClWalkscclwlks 29803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-rp 13033 df-xadd 13153 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-word 14550 df-lsw 14598 df-concat 14606 df-s1 14631 df-substr 14676 df-pfx 14706 df-s2 14884 df-vtx 29030 df-iedg 29031 df-edg 29080 df-uhgr 29090 df-ushgr 29091 df-upgr 29114 df-umgr 29115 df-uspgr 29182 df-usgr 29183 df-fusgr 29349 df-nbgr 29365 df-vtxdg 29499 df-rgr 29590 df-rusgr 29591 df-wlks 29632 df-clwlks 29804 df-wwlks 29860 df-wwlksn 29861 df-clwwlk 30011 df-clwwlkn 30054 df-clwwlknon 30117 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |