|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > numclwlk1 | Structured version Visualization version GIF version | ||
| Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0. (Contributed by AV, 23-May-2022.) | 
| Ref | Expression | 
|---|---|
| numclwlk1.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| numclwlk1.c | ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} | 
| numclwlk1.f | ⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd ‘𝑤)‘0) = 𝑋)} | 
| Ref | Expression | 
|---|---|
| numclwlk1 | ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uzp1 12920 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 = 2 ∨ 𝑁 ∈ (ℤ≥‘(2 + 1)))) | |
| 2 | numclwlk1.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | numclwlk1.c | . . . . . . . 8 ⊢ 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = 𝑁 ∧ ((2nd ‘𝑤)‘0) = 𝑋 ∧ ((2nd ‘𝑤)‘(𝑁 − 2)) = 𝑋)} | |
| 4 | numclwlk1.f | . . . . . . . 8 ⊢ 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st ‘𝑤)) = (𝑁 − 2) ∧ ((2nd ‘𝑤)‘0) = 𝑋)} | |
| 5 | 2, 3, 4 | numclwlk1lem1 30389 | . . . . . . 7 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) | 
| 6 | 5 | expcom 413 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 = 2) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) | 
| 7 | 6 | expcom 413 | . . . . 5 ⊢ (𝑁 = 2 → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) | 
| 8 | 2, 3, 4 | numclwlk1lem2 30390 | . . . . . . . 8 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) | 
| 9 | 8 | expcom 413 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) | 
| 10 | 9 | expcom 413 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) | 
| 11 | 2p1e3 12409 | . . . . . . 7 ⊢ (2 + 1) = 3 | |
| 12 | 11 | fveq2i 6908 | . . . . . 6 ⊢ (ℤ≥‘(2 + 1)) = (ℤ≥‘3) | 
| 13 | 10, 12 | eleq2s 2858 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘(2 + 1)) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) | 
| 14 | 7, 13 | jaoi 857 | . . . 4 ⊢ ((𝑁 = 2 ∨ 𝑁 ∈ (ℤ≥‘(2 + 1))) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) | 
| 15 | 1, 14 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑋 ∈ 𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))) | 
| 16 | 15 | impcom 407 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))) | 
| 17 | 16 | impcom 407 | 1 ⊢ (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑁 ∈ (ℤ≥‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {crab 3435 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 1st c1st 8013 2nd c2nd 8014 Fincfn 8986 0cc0 11156 1c1 11157 + caddc 11159 · cmul 11161 − cmin 11493 2c2 12322 3c3 12323 ℤ≥cuz 12879 ♯chash 14370 Vtxcvtx 29014 RegUSGraph crusgr 29575 ClWalkscclwlks 29791 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-xnn0 12602 df-z 12616 df-uz 12880 df-rp 13036 df-xadd 13156 df-fz 13549 df-fzo 13696 df-seq 14044 df-exp 14104 df-hash 14371 df-word 14554 df-lsw 14602 df-concat 14610 df-s1 14635 df-substr 14680 df-pfx 14710 df-s2 14888 df-vtx 29016 df-iedg 29017 df-edg 29066 df-uhgr 29076 df-ushgr 29077 df-upgr 29100 df-umgr 29101 df-uspgr 29168 df-usgr 29169 df-fusgr 29335 df-nbgr 29351 df-vtxdg 29485 df-rgr 29576 df-rusgr 29577 df-wlks 29618 df-clwlks 29792 df-wwlks 29851 df-wwlksn 29852 df-clwwlk 30002 df-clwwlkn 30045 df-clwwlknon 30108 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |