MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk1 Structured version   Visualization version   GIF version

Theorem numclwlk1 30403
Description: Statement 9 in [Huneke] p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) with v(n-2) = v is kf(n-2)". Since 𝐺 is k-regular, the vertex v(n-2) = v has k neighbors v(n-1), so there are k walks from v(n-2) = v to v(n) = v (via each of v's neighbors) completing each of the f(n-2) walks from v=v(0) to v(n-2)=v. This theorem holds even for k=0. (Contributed by AV, 23-May-2022.)
Hypotheses
Ref Expression
numclwlk1.v 𝑉 = (Vtx‘𝐺)
numclwlk1.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
numclwlk1.f 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
Assertion
Ref Expression
numclwlk1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Distinct variable groups:   𝑤,𝐺   𝑤,𝐾   𝑤,𝑁   𝑤,𝑉   𝑤,𝑋   𝑤,𝐶   𝑤,𝐹

Proof of Theorem numclwlk1
StepHypRef Expression
1 uzp1 12944 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 = 2 ∨ 𝑁 ∈ (ℤ‘(2 + 1))))
2 numclwlk1.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
3 numclwlk1.c . . . . . . . 8 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = 𝑁 ∧ ((2nd𝑤)‘0) = 𝑋 ∧ ((2nd𝑤)‘(𝑁 − 2)) = 𝑋)}
4 numclwlk1.f . . . . . . . 8 𝐹 = {𝑤 ∈ (ClWalks‘𝐺) ∣ ((♯‘(1st𝑤)) = (𝑁 − 2) ∧ ((2nd𝑤)‘0) = 𝑋)}
52, 3, 4numclwlk1lem1 30401 . . . . . . 7 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 = 2)) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
65expcom 413 . . . . . 6 ((𝑋𝑉𝑁 = 2) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))
76expcom 413 . . . . 5 (𝑁 = 2 → (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))))
82, 3, 4numclwlk1lem2 30402 . . . . . . . 8 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘3))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
98expcom 413 . . . . . . 7 ((𝑋𝑉𝑁 ∈ (ℤ‘3)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))
109expcom 413 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))))
11 2p1e3 12435 . . . . . . 7 (2 + 1) = 3
1211fveq2i 6923 . . . . . 6 (ℤ‘(2 + 1)) = (ℤ‘3)
1310, 12eleq2s 2862 . . . . 5 (𝑁 ∈ (ℤ‘(2 + 1)) → (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))))
147, 13jaoi 856 . . . 4 ((𝑁 = 2 ∨ 𝑁 ∈ (ℤ‘(2 + 1))) → (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))))
151, 14syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑋𝑉 → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))))
1615impcom 407 . 2 ((𝑋𝑉𝑁 ∈ (ℤ‘2)) → ((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝐶) = (𝐾 · (♯‘𝐹))))
1716impcom 407 1 (((𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) ∧ (𝑋𝑉𝑁 ∈ (ℤ‘2))) → (♯‘𝐶) = (𝐾 · (♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  Fincfn 9003  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  2c2 12348  3c3 12349  cuz 12903  chash 14379  Vtxcvtx 29031   RegUSGraph crusgr 29592  ClWalkscclwlks 29806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-rp 13058  df-xadd 13176  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-s2 14897  df-vtx 29033  df-iedg 29034  df-edg 29083  df-uhgr 29093  df-ushgr 29094  df-upgr 29117  df-umgr 29118  df-uspgr 29185  df-usgr 29186  df-fusgr 29352  df-nbgr 29368  df-vtxdg 29502  df-rgr 29593  df-rusgr 29594  df-wlks 29635  df-clwlks 29807  df-wwlks 29863  df-wwlksn 29864  df-clwwlk 30014  df-clwwlkn 30057  df-clwwlknon 30120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator