![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlkovq | Structured version Visualization version GIF version |
Description: Value of operation π, mapping a vertex π£ and a positive integer π to the not closed walks v(0) ... v(n) of length π from a fixed vertex π£ = v(0). "Not closed" means v(n) =/= v(0). Remark: π β β0 would not be useful: numclwwlkqhash 30159 would not hold, because (πΎβ0) = 1! (Contributed by Alexander van der Vekens, 27-Sep-2018.) (Revised by AV, 30-May-2021.) |
Ref | Expression |
---|---|
numclwwlk.v | β’ π = (VtxβπΊ) |
numclwwlk.q | β’ π = (π£ β π, π β β β¦ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)}) |
Ref | Expression |
---|---|
numclwwlkovq | β’ ((π β π β§ π β β) β (πππ) = {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7421 | . . . 4 β’ (π = π β (π WWalksN πΊ) = (π WWalksN πΊ)) | |
2 | 1 | adantl 481 | . . 3 β’ ((π£ = π β§ π = π) β (π WWalksN πΊ) = (π WWalksN πΊ)) |
3 | eqeq2 2739 | . . . . 5 β’ (π£ = π β ((π€β0) = π£ β (π€β0) = π)) | |
4 | neeq2 2999 | . . . . 5 β’ (π£ = π β ((lastSβπ€) β π£ β (lastSβπ€) β π)) | |
5 | 3, 4 | anbi12d 630 | . . . 4 β’ (π£ = π β (((π€β0) = π£ β§ (lastSβπ€) β π£) β ((π€β0) = π β§ (lastSβπ€) β π))) |
6 | 5 | adantr 480 | . . 3 β’ ((π£ = π β§ π = π) β (((π€β0) = π£ β§ (lastSβπ€) β π£) β ((π€β0) = π β§ (lastSβπ€) β π))) |
7 | 2, 6 | rabeqbidv 3444 | . 2 β’ ((π£ = π β§ π = π) β {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)} = {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) |
8 | numclwwlk.q | . 2 β’ π = (π£ β π, π β β β¦ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)}) | |
9 | ovex 7447 | . . 3 β’ (π WWalksN πΊ) β V | |
10 | 9 | rabex 5328 | . 2 β’ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)} β V |
11 | 7, 8, 10 | ovmpoa 7568 | 1 β’ ((π β π β§ π β β) β (πππ) = {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 β wne 2935 {crab 3427 βcfv 6542 (class class class)co 7414 β cmpo 7416 0cc0 11124 βcn 12228 lastSclsw 14530 Vtxcvtx 28783 WWalksN cwwlksn 29611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 |
This theorem is referenced by: numclwwlkqhash 30159 numclwwlk2lem1 30160 numclwlk2lem2f 30161 numclwlk2lem2f1o 30163 |
Copyright terms: Public domain | W3C validator |