MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovq Structured version   Visualization version   GIF version

Theorem numclwwlkovq 30303
Description: Value of operation 𝑄, mapping a vertex 𝑣 and a positive integer 𝑛 to the not closed walks v(0) ... v(n) of length 𝑛 from a fixed vertex 𝑣 = v(0). "Not closed" means v(n) =/= v(0). Remark: 𝑛 ∈ ℕ0 would not be useful: numclwwlkqhash 30304 would not hold, because (𝐾↑0) = 1! (Contributed by Alexander van der Vekens, 27-Sep-2018.) (Revised by AV, 30-May-2021.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
Assertion
Ref Expression
numclwwlkovq ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlkovq
StepHypRef Expression
1 oveq1 7394 . . . 4 (𝑛 = 𝑁 → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
21adantl 481 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
3 eqeq2 2741 . . . . 5 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
4 neeq2 2988 . . . . 5 (𝑣 = 𝑋 → ((lastS‘𝑤) ≠ 𝑣 ↔ (lastS‘𝑤) ≠ 𝑋))
53, 4anbi12d 632 . . . 4 (𝑣 = 𝑋 → (((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
65adantr 480 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
72, 6rabeqbidv 3424 . 2 ((𝑣 = 𝑋𝑛 = 𝑁) → {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
8 numclwwlk.q . 2 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
9 ovex 7420 . . 3 (𝑁 WWalksN 𝐺) ∈ V
109rabex 5294 . 2 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ∈ V
117, 8, 10ovmpoa 7544 1 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3405  cfv 6511  (class class class)co 7387  cmpo 7389  0cc0 11068  cn 12186  lastSclsw 14527  Vtxcvtx 28923   WWalksN cwwlksn 29756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392
This theorem is referenced by:  numclwwlkqhash  30304  numclwwlk2lem1  30305  numclwlk2lem2f  30306  numclwlk2lem2f1o  30308
  Copyright terms: Public domain W3C validator