MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovq Structured version   Visualization version   GIF version

Theorem numclwwlkovq 28162
Description: Value of operation 𝑄, mapping a vertex 𝑣 and a positive integer 𝑛 to the not closed walks v(0) ... v(n) of length 𝑛 from a fixed vertex 𝑣 = v(0). "Not closed" means v(n) =/= v(0). Remark: 𝑛 ∈ ℕ0 would not be useful: numclwwlkqhash 28163 would not hold, because (𝐾↑0) = 1! (Contributed by Alexander van der Vekens, 27-Sep-2018.) (Revised by AV, 30-May-2021.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
Assertion
Ref Expression
numclwwlkovq ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlkovq
StepHypRef Expression
1 oveq1 7156 . . . 4 (𝑛 = 𝑁 → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
21adantl 485 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
3 eqeq2 2836 . . . . 5 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
4 neeq2 3077 . . . . 5 (𝑣 = 𝑋 → ((lastS‘𝑤) ≠ 𝑣 ↔ (lastS‘𝑤) ≠ 𝑋))
53, 4anbi12d 633 . . . 4 (𝑣 = 𝑋 → (((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
65adantr 484 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
72, 6rabeqbidv 3471 . 2 ((𝑣 = 𝑋𝑛 = 𝑁) → {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
8 numclwwlk.q . 2 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
9 ovex 7182 . . 3 (𝑁 WWalksN 𝐺) ∈ V
109rabex 5221 . 2 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ∈ V
117, 8, 10ovmpoa 7298 1 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  {crab 3137  cfv 6343  (class class class)co 7149  cmpo 7151  0cc0 10535  cn 11634  lastSclsw 13914  Vtxcvtx 26792   WWalksN cwwlksn 27615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-iota 6302  df-fun 6345  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154
This theorem is referenced by:  numclwwlkqhash  28163  numclwwlk2lem1  28164  numclwlk2lem2f  28165  numclwlk2lem2f1o  28167
  Copyright terms: Public domain W3C validator