MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovq Structured version   Visualization version   GIF version

Theorem numclwwlkovq 30403
Description: Value of operation 𝑄, mapping a vertex 𝑣 and a positive integer 𝑛 to the not closed walks v(0) ... v(n) of length 𝑛 from a fixed vertex 𝑣 = v(0). "Not closed" means v(n) =/= v(0). Remark: 𝑛 ∈ ℕ0 would not be useful: numclwwlkqhash 30404 would not hold, because (𝐾↑0) = 1! (Contributed by Alexander van der Vekens, 27-Sep-2018.) (Revised by AV, 30-May-2021.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
Assertion
Ref Expression
numclwwlkovq ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlkovq
StepHypRef Expression
1 oveq1 7438 . . . 4 (𝑛 = 𝑁 → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
21adantl 481 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
3 eqeq2 2747 . . . . 5 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
4 neeq2 3002 . . . . 5 (𝑣 = 𝑋 → ((lastS‘𝑤) ≠ 𝑣 ↔ (lastS‘𝑤) ≠ 𝑋))
53, 4anbi12d 632 . . . 4 (𝑣 = 𝑋 → (((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
65adantr 480 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
72, 6rabeqbidv 3452 . 2 ((𝑣 = 𝑋𝑛 = 𝑁) → {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
8 numclwwlk.q . 2 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
9 ovex 7464 . . 3 (𝑁 WWalksN 𝐺) ∈ V
109rabex 5345 . 2 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ∈ V
117, 8, 10ovmpoa 7588 1 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  {crab 3433  cfv 6563  (class class class)co 7431  cmpo 7433  0cc0 11153  cn 12264  lastSclsw 14597  Vtxcvtx 29028   WWalksN cwwlksn 29856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436
This theorem is referenced by:  numclwwlkqhash  30404  numclwwlk2lem1  30405  numclwlk2lem2f  30406  numclwlk2lem2f1o  30408
  Copyright terms: Public domain W3C validator