MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwwlkovq Structured version   Visualization version   GIF version

Theorem numclwwlkovq 27566
Description: Value of operation 𝑄, mapping a vertex 𝑣 and a positive integer 𝑛 to the not closed walks v(0) ... v(n) of length 𝑛 from a fixed vertex 𝑣 = v(0). "Not closed" means v(n) =/= v(0). Remark: 𝑛 ∈ ℕ0 would not be useful: numclwwlkqhash 27567 would not hold, because (𝐾↑0) = 1! (Contributed by Alexander van der Vekens, 27-Sep-2018.) (Revised by AV, 30-May-2021.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
Assertion
Ref Expression
numclwwlkovq ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑉(𝑤)

Proof of Theorem numclwwlkovq
StepHypRef Expression
1 oveq1 6801 . . . 4 (𝑛 = 𝑁 → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
21adantl 467 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (𝑛 WWalksN 𝐺) = (𝑁 WWalksN 𝐺))
3 eqeq2 2782 . . . . 5 (𝑣 = 𝑋 → ((𝑤‘0) = 𝑣 ↔ (𝑤‘0) = 𝑋))
4 neeq2 3006 . . . . 5 (𝑣 = 𝑋 → ((lastS‘𝑤) ≠ 𝑣 ↔ (lastS‘𝑤) ≠ 𝑋))
53, 4anbi12d 610 . . . 4 (𝑣 = 𝑋 → (((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
65adantr 466 . . 3 ((𝑣 = 𝑋𝑛 = 𝑁) → (((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣) ↔ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)))
72, 6rabeqbidv 3345 . 2 ((𝑣 = 𝑋𝑛 = 𝑁) → {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
8 numclwwlk.q . 2 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
9 ovex 6824 . . 3 (𝑁 WWalksN 𝐺) ∈ V
109rabex 4947 . 2 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ∈ V
117, 8, 10ovmpt2a 6939 1 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  {crab 3065  cfv 6032  (class class class)co 6794  cmpt2 6796  0cc0 10139  cn 11223  lastSclsw 13489  Vtxcvtx 26096   WWalksN cwwlksn 26955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3589  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-iota 5995  df-fun 6034  df-fv 6040  df-ov 6797  df-oprab 6798  df-mpt2 6799
This theorem is referenced by:  numclwwlkqhash  27567  numclwwlk2lem1  27568  numclwlk2lem2f  27569  numclwlk2lem2f1o  27571  numclwwlk2lem1OLD  27575  numclwlk2lem2fOLD  27576  numclwlk2lem2f1oOLD  27578
  Copyright terms: Public domain W3C validator