![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlkovq | Structured version Visualization version GIF version |
Description: Value of operation π, mapping a vertex π£ and a positive integer π to the not closed walks v(0) ... v(n) of length π from a fixed vertex π£ = v(0). "Not closed" means v(n) =/= v(0). Remark: π β β0 would not be useful: numclwwlkqhash 29625 would not hold, because (πΎβ0) = 1! (Contributed by Alexander van der Vekens, 27-Sep-2018.) (Revised by AV, 30-May-2021.) |
Ref | Expression |
---|---|
numclwwlk.v | β’ π = (VtxβπΊ) |
numclwwlk.q | β’ π = (π£ β π, π β β β¦ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)}) |
Ref | Expression |
---|---|
numclwwlkovq | β’ ((π β π β§ π β β) β (πππ) = {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7415 | . . . 4 β’ (π = π β (π WWalksN πΊ) = (π WWalksN πΊ)) | |
2 | 1 | adantl 482 | . . 3 β’ ((π£ = π β§ π = π) β (π WWalksN πΊ) = (π WWalksN πΊ)) |
3 | eqeq2 2744 | . . . . 5 β’ (π£ = π β ((π€β0) = π£ β (π€β0) = π)) | |
4 | neeq2 3004 | . . . . 5 β’ (π£ = π β ((lastSβπ€) β π£ β (lastSβπ€) β π)) | |
5 | 3, 4 | anbi12d 631 | . . . 4 β’ (π£ = π β (((π€β0) = π£ β§ (lastSβπ€) β π£) β ((π€β0) = π β§ (lastSβπ€) β π))) |
6 | 5 | adantr 481 | . . 3 β’ ((π£ = π β§ π = π) β (((π€β0) = π£ β§ (lastSβπ€) β π£) β ((π€β0) = π β§ (lastSβπ€) β π))) |
7 | 2, 6 | rabeqbidv 3449 | . 2 β’ ((π£ = π β§ π = π) β {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)} = {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) |
8 | numclwwlk.q | . 2 β’ π = (π£ β π, π β β β¦ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π£ β§ (lastSβπ€) β π£)}) | |
9 | ovex 7441 | . . 3 β’ (π WWalksN πΊ) β V | |
10 | 9 | rabex 5332 | . 2 β’ {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)} β V |
11 | 7, 8, 10 | ovmpoa 7562 | 1 β’ ((π β π β§ π β β) β (πππ) = {π€ β (π WWalksN πΊ) β£ ((π€β0) = π β§ (lastSβπ€) β π)}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 {crab 3432 βcfv 6543 (class class class)co 7408 β cmpo 7410 0cc0 11109 βcn 12211 lastSclsw 14511 Vtxcvtx 28253 WWalksN cwwlksn 29077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 |
This theorem is referenced by: numclwwlkqhash 29625 numclwwlk2lem1 29626 numclwlk2lem2f 29627 numclwlk2lem2f1o 29629 |
Copyright terms: Public domain | W3C validator |