MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsipid Structured version   Visualization version   GIF version

Theorem obsipid 21654
Description: A basis element has length one. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
obsipid.h , = (·𝑖𝑊)
obsipid.f 𝐹 = (Scalar‘𝑊)
obsipid.u 1 = (1r𝐹)
Assertion
Ref Expression
obsipid ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = 1 )

Proof of Theorem obsipid
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 obsipid.h . . . 4 , = (·𝑖𝑊)
3 obsipid.f . . . 4 𝐹 = (Scalar‘𝑊)
4 obsipid.u . . . 4 1 = (1r𝐹)
5 eqid 2731 . . . 4 (0g𝐹) = (0g𝐹)
61, 2, 3, 4, 5obsip 21653 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵𝐴𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g𝐹)))
763anidm23 1423 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g𝐹)))
8 eqid 2731 . . 3 𝐴 = 𝐴
98iftruei 4477 . 2 if(𝐴 = 𝐴, 1 , (0g𝐹)) = 1
107, 9eqtrdi 2782 1 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ifcif 4470  cfv 6476  (class class class)co 7341  Basecbs 17115  Scalarcsca 17159  ·𝑖cip 17161  0gc0g 17338  1rcur 20094  OBasiscobs 21634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-obs 21637
This theorem is referenced by:  obsne0  21657
  Copyright terms: Public domain W3C validator