| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > obsipid | Structured version Visualization version GIF version | ||
| Description: A basis element has length one. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| Ref | Expression |
|---|---|
| obsipid.h | ⊢ , = (·𝑖‘𝑊) |
| obsipid.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| obsipid.u | ⊢ 1 = (1r‘𝐹) |
| Ref | Expression |
|---|---|
| obsipid | ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | obsipid.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 3 | obsipid.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | obsipid.u | . . . 4 ⊢ 1 = (1r‘𝐹) | |
| 5 | eqid 2729 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 6 | 1, 2, 3, 4, 5 | obsip 21630 | . . 3 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g‘𝐹))) |
| 7 | 6 | 3anidm23 1423 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g‘𝐹))) |
| 8 | eqid 2729 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 9 | 8 | iftruei 4495 | . 2 ⊢ if(𝐴 = 𝐴, 1 , (0g‘𝐹)) = 1 |
| 10 | 7, 9 | eqtrdi 2780 | 1 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4488 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Scalarcsca 17223 ·𝑖cip 17225 0gc0g 17402 1rcur 20090 OBasiscobs 21611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-obs 21614 |
| This theorem is referenced by: obsne0 21634 |
| Copyright terms: Public domain | W3C validator |