Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > obsipid | Structured version Visualization version GIF version |
Description: A basis element has unit length. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsipid.h | ⊢ , = (·𝑖‘𝑊) |
obsipid.f | ⊢ 𝐹 = (Scalar‘𝑊) |
obsipid.u | ⊢ 1 = (1r‘𝐹) |
Ref | Expression |
---|---|
obsipid | ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | obsipid.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
3 | obsipid.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | obsipid.u | . . . 4 ⊢ 1 = (1r‘𝐹) | |
5 | eqid 2738 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
6 | 1, 2, 3, 4, 5 | obsip 20928 | . . 3 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g‘𝐹))) |
7 | 6 | 3anidm23 1420 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g‘𝐹))) |
8 | eqid 2738 | . . 3 ⊢ 𝐴 = 𝐴 | |
9 | 8 | iftruei 4466 | . 2 ⊢ if(𝐴 = 𝐴, 1 , (0g‘𝐹)) = 1 |
10 | 7, 9 | eqtrdi 2794 | 1 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ifcif 4459 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 ·𝑖cip 16967 0gc0g 17150 1rcur 19737 OBasiscobs 20909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-obs 20912 |
This theorem is referenced by: obsne0 20932 |
Copyright terms: Public domain | W3C validator |