Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > obsipid | Structured version Visualization version GIF version |
Description: A basis element has unit length. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsipid.h | ⊢ , = (·𝑖‘𝑊) |
obsipid.f | ⊢ 𝐹 = (Scalar‘𝑊) |
obsipid.u | ⊢ 1 = (1r‘𝐹) |
Ref | Expression |
---|---|
obsipid | ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | obsipid.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
3 | obsipid.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | obsipid.u | . . . 4 ⊢ 1 = (1r‘𝐹) | |
5 | eqid 2737 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
6 | 1, 2, 3, 4, 5 | obsip 20683 | . . 3 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g‘𝐹))) |
7 | 6 | 3anidm23 1423 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g‘𝐹))) |
8 | eqid 2737 | . . 3 ⊢ 𝐴 = 𝐴 | |
9 | 8 | iftruei 4446 | . 2 ⊢ if(𝐴 = 𝐴, 1 , (0g‘𝐹)) = 1 |
10 | 7, 9 | eqtrdi 2794 | 1 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ifcif 4439 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 Scalarcsca 16805 ·𝑖cip 16807 0gc0g 16944 1rcur 19516 OBasiscobs 20664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-obs 20667 |
This theorem is referenced by: obsne0 20687 |
Copyright terms: Public domain | W3C validator |