MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsipid Structured version   Visualization version   GIF version

Theorem obsipid 21276
Description: A basis element has length one. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
obsipid.h , = (Β·π‘–β€˜π‘Š)
obsipid.f 𝐹 = (Scalarβ€˜π‘Š)
obsipid.u 1 = (1rβ€˜πΉ)
Assertion
Ref Expression
obsipid ((𝐡 ∈ (OBasisβ€˜π‘Š) ∧ 𝐴 ∈ 𝐡) β†’ (𝐴 , 𝐴) = 1 )

Proof of Theorem obsipid
StepHypRef Expression
1 eqid 2732 . . . 4 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
2 obsipid.h . . . 4 , = (Β·π‘–β€˜π‘Š)
3 obsipid.f . . . 4 𝐹 = (Scalarβ€˜π‘Š)
4 obsipid.u . . . 4 1 = (1rβ€˜πΉ)
5 eqid 2732 . . . 4 (0gβ€˜πΉ) = (0gβ€˜πΉ)
61, 2, 3, 4, 5obsip 21275 . . 3 ((𝐡 ∈ (OBasisβ€˜π‘Š) ∧ 𝐴 ∈ 𝐡 ∧ 𝐴 ∈ 𝐡) β†’ (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0gβ€˜πΉ)))
763anidm23 1421 . 2 ((𝐡 ∈ (OBasisβ€˜π‘Š) ∧ 𝐴 ∈ 𝐡) β†’ (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0gβ€˜πΉ)))
8 eqid 2732 . . 3 𝐴 = 𝐴
98iftruei 4535 . 2 if(𝐴 = 𝐴, 1 , (0gβ€˜πΉ)) = 1
107, 9eqtrdi 2788 1 ((𝐡 ∈ (OBasisβ€˜π‘Š) ∧ 𝐴 ∈ 𝐡) β†’ (𝐴 , 𝐴) = 1 )
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  ifcif 4528  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  Scalarcsca 17199  Β·π‘–cip 17201  0gc0g 17384  1rcur 20003  OBasiscobs 21256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-obs 21259
This theorem is referenced by:  obsne0  21279
  Copyright terms: Public domain W3C validator