MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsipid Structured version   Visualization version   GIF version

Theorem obsipid 20929
Description: A basis element has unit length. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
obsipid.h , = (·𝑖𝑊)
obsipid.f 𝐹 = (Scalar‘𝑊)
obsipid.u 1 = (1r𝐹)
Assertion
Ref Expression
obsipid ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = 1 )

Proof of Theorem obsipid
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 obsipid.h . . . 4 , = (·𝑖𝑊)
3 obsipid.f . . . 4 𝐹 = (Scalar‘𝑊)
4 obsipid.u . . . 4 1 = (1r𝐹)
5 eqid 2738 . . . 4 (0g𝐹) = (0g𝐹)
61, 2, 3, 4, 5obsip 20928 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵𝐴𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g𝐹)))
763anidm23 1420 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g𝐹)))
8 eqid 2738 . . 3 𝐴 = 𝐴
98iftruei 4466 . 2 if(𝐴 = 𝐴, 1 , (0g𝐹)) = 1
107, 9eqtrdi 2794 1 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ifcif 4459  cfv 6433  (class class class)co 7275  Basecbs 16912  Scalarcsca 16965  ·𝑖cip 16967  0gc0g 17150  1rcur 19737  OBasiscobs 20909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-obs 20912
This theorem is referenced by:  obsne0  20932
  Copyright terms: Public domain W3C validator