MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsipid Structured version   Visualization version   GIF version

Theorem obsipid 20839
Description: A basis element has unit length. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
obsipid.h , = (·𝑖𝑊)
obsipid.f 𝐹 = (Scalar‘𝑊)
obsipid.u 1 = (1r𝐹)
Assertion
Ref Expression
obsipid ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = 1 )

Proof of Theorem obsipid
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 obsipid.h . . . 4 , = (·𝑖𝑊)
3 obsipid.f . . . 4 𝐹 = (Scalar‘𝑊)
4 obsipid.u . . . 4 1 = (1r𝐹)
5 eqid 2738 . . . 4 (0g𝐹) = (0g𝐹)
61, 2, 3, 4, 5obsip 20838 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵𝐴𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g𝐹)))
763anidm23 1419 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g𝐹)))
8 eqid 2738 . . 3 𝐴 = 𝐴
98iftruei 4463 . 2 if(𝐴 = 𝐴, 1 , (0g𝐹)) = 1
107, 9eqtrdi 2795 1 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ifcif 4456  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891  ·𝑖cip 16893  0gc0g 17067  1rcur 19652  OBasiscobs 20819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-obs 20822
This theorem is referenced by:  obsne0  20842
  Copyright terms: Public domain W3C validator