![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obsipid | Structured version Visualization version GIF version |
Description: A basis element has length one. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsipid.h | β’ , = (Β·πβπ) |
obsipid.f | β’ πΉ = (Scalarβπ) |
obsipid.u | β’ 1 = (1rβπΉ) |
Ref | Expression |
---|---|
obsipid | β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β (π΄ , π΄) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | obsipid.h | . . . 4 β’ , = (Β·πβπ) | |
3 | obsipid.f | . . . 4 β’ πΉ = (Scalarβπ) | |
4 | obsipid.u | . . . 4 β’ 1 = (1rβπΉ) | |
5 | eqid 2732 | . . . 4 β’ (0gβπΉ) = (0gβπΉ) | |
6 | 1, 2, 3, 4, 5 | obsip 21275 | . . 3 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅ β§ π΄ β π΅) β (π΄ , π΄) = if(π΄ = π΄, 1 , (0gβπΉ))) |
7 | 6 | 3anidm23 1421 | . 2 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β (π΄ , π΄) = if(π΄ = π΄, 1 , (0gβπΉ))) |
8 | eqid 2732 | . . 3 β’ π΄ = π΄ | |
9 | 8 | iftruei 4535 | . 2 β’ if(π΄ = π΄, 1 , (0gβπΉ)) = 1 |
10 | 7, 9 | eqtrdi 2788 | 1 β’ ((π΅ β (OBasisβπ) β§ π΄ β π΅) β (π΄ , π΄) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 ifcif 4528 βcfv 6543 (class class class)co 7408 Basecbs 17143 Scalarcsca 17199 Β·πcip 17201 0gc0g 17384 1rcur 20003 OBasiscobs 21256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-obs 21259 |
This theorem is referenced by: obsne0 21279 |
Copyright terms: Public domain | W3C validator |