MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsipid Structured version   Visualization version   GIF version

Theorem obsipid 21631
Description: A basis element has length one. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
obsipid.h , = (·𝑖𝑊)
obsipid.f 𝐹 = (Scalar‘𝑊)
obsipid.u 1 = (1r𝐹)
Assertion
Ref Expression
obsipid ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = 1 )

Proof of Theorem obsipid
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 obsipid.h . . . 4 , = (·𝑖𝑊)
3 obsipid.f . . . 4 𝐹 = (Scalar‘𝑊)
4 obsipid.u . . . 4 1 = (1r𝐹)
5 eqid 2729 . . . 4 (0g𝐹) = (0g𝐹)
61, 2, 3, 4, 5obsip 21630 . . 3 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵𝐴𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g𝐹)))
763anidm23 1423 . 2 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g𝐹)))
8 eqid 2729 . . 3 𝐴 = 𝐴
98iftruei 4495 . 2 if(𝐴 = 𝐴, 1 , (0g𝐹)) = 1
107, 9eqtrdi 2780 1 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴𝐵) → (𝐴 , 𝐴) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4488  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223  ·𝑖cip 17225  0gc0g 17402  1rcur 20090  OBasiscobs 21611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-obs 21614
This theorem is referenced by:  obsne0  21634
  Copyright terms: Public domain W3C validator