![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obsipid | Structured version Visualization version GIF version |
Description: A basis element has length one. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsipid.h | ⊢ , = (·𝑖‘𝑊) |
obsipid.f | ⊢ 𝐹 = (Scalar‘𝑊) |
obsipid.u | ⊢ 1 = (1r‘𝐹) |
Ref | Expression |
---|---|
obsipid | ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | obsipid.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
3 | obsipid.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | obsipid.u | . . . 4 ⊢ 1 = (1r‘𝐹) | |
5 | eqid 2740 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
6 | 1, 2, 3, 4, 5 | obsip 21764 | . . 3 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g‘𝐹))) |
7 | 6 | 3anidm23 1421 | . 2 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = if(𝐴 = 𝐴, 1 , (0g‘𝐹))) |
8 | eqid 2740 | . . 3 ⊢ 𝐴 = 𝐴 | |
9 | 8 | iftruei 4555 | . 2 ⊢ if(𝐴 = 𝐴, 1 , (0g‘𝐹)) = 1 |
10 | 7, 9 | eqtrdi 2796 | 1 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝐴 ∈ 𝐵) → (𝐴 , 𝐴) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ifcif 4548 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑖cip 17316 0gc0g 17499 1rcur 20208 OBasiscobs 21745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-obs 21748 |
This theorem is referenced by: obsne0 21768 |
Copyright terms: Public domain | W3C validator |