MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsrcl Structured version   Visualization version   GIF version

Theorem obsrcl 20867
Description: Reverse closure for an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.)
Assertion
Ref Expression
obsrcl (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)

Proof of Theorem obsrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2821 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2821 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2821 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
5 eqid 2821 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
6 eqid 2821 . . 3 (ocv‘𝑊) = (ocv‘𝑊)
7 eqid 2821 . . 3 (0g𝑊) = (0g𝑊)
81, 2, 3, 4, 5, 6, 7isobs 20864 . 2 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊) ∧ (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ((ocv‘𝑊)‘𝐵) = {(0g𝑊)})))
98simp1bi 1141 1 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wss 3936  ifcif 4467  {csn 4567  cfv 6355  (class class class)co 7156  Basecbs 16483  Scalarcsca 16568  ·𝑖cip 16570  0gc0g 16713  1rcur 19251  PreHilcphl 20768  ocvcocv 20804  OBasiscobs 20846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-obs 20849
This theorem is referenced by:  obsne0  20869  obs2ocv  20871  obselocv  20872  obslbs  20874
  Copyright terms: Public domain W3C validator