![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obsrcl | Structured version Visualization version GIF version |
Description: Reverse closure for an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsrcl | β’ (π΅ β (OBasisβπ) β π β PreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2728 | . . 3 β’ (Β·πβπ) = (Β·πβπ) | |
3 | eqid 2728 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
4 | eqid 2728 | . . 3 β’ (1rβ(Scalarβπ)) = (1rβ(Scalarβπ)) | |
5 | eqid 2728 | . . 3 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
6 | eqid 2728 | . . 3 β’ (ocvβπ) = (ocvβπ) | |
7 | eqid 2728 | . . 3 β’ (0gβπ) = (0gβπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isobs 21654 | . 2 β’ (π΅ β (OBasisβπ) β (π β PreHil β§ π΅ β (Baseβπ) β§ (βπ₯ β π΅ βπ¦ β π΅ (π₯(Β·πβπ)π¦) = if(π₯ = π¦, (1rβ(Scalarβπ)), (0gβ(Scalarβπ))) β§ ((ocvβπ)βπ΅) = {(0gβπ)}))) |
9 | 8 | simp1bi 1143 | 1 β’ (π΅ β (OBasisβπ) β π β PreHil) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 βwral 3058 β wss 3947 ifcif 4529 {csn 4629 βcfv 6548 (class class class)co 7420 Basecbs 17180 Scalarcsca 17236 Β·πcip 17238 0gc0g 17421 1rcur 20121 PreHilcphl 21556 ocvcocv 21592 OBasiscobs 21636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-obs 21639 |
This theorem is referenced by: obsne0 21659 obs2ocv 21661 obselocv 21662 obslbs 21664 |
Copyright terms: Public domain | W3C validator |