| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > obsrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| Ref | Expression |
|---|---|
| obsrcl | ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2735 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2735 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2735 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 5 | eqid 2735 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 6 | eqid 2735 | . . 3 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 7 | eqid 2735 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isobs 21678 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊) ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(·𝑖‘𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ((ocv‘𝑊)‘𝐵) = {(0g‘𝑊)}))) |
| 9 | 8 | simp1bi 1145 | 1 ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ifcif 4500 {csn 4601 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Scalarcsca 17272 ·𝑖cip 17274 0gc0g 17451 1rcur 20139 PreHilcphl 21582 ocvcocv 21618 OBasiscobs 21660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-obs 21663 |
| This theorem is referenced by: obsne0 21683 obs2ocv 21685 obselocv 21686 obslbs 21688 |
| Copyright terms: Public domain | W3C validator |