| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > obsrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| Ref | Expression |
|---|---|
| obsrcl | ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2731 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2731 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 5 | eqid 2731 | . . 3 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 6 | eqid 2731 | . . 3 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 7 | eqid 2731 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isobs 21657 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊) ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(·𝑖‘𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ((ocv‘𝑊)‘𝐵) = {(0g‘𝑊)}))) |
| 9 | 8 | simp1bi 1145 | 1 ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ifcif 4472 {csn 4573 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Scalarcsca 17164 ·𝑖cip 17166 0gc0g 17343 1rcur 20099 PreHilcphl 21561 ocvcocv 21597 OBasiscobs 21639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-obs 21642 |
| This theorem is referenced by: obsne0 21662 obs2ocv 21664 obselocv 21665 obslbs 21667 |
| Copyright terms: Public domain | W3C validator |