MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsrcl Structured version   Visualization version   GIF version

Theorem obsrcl 21630
Description: Reverse closure for an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.)
Assertion
Ref Expression
obsrcl (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)

Proof of Theorem obsrcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2729 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2729 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2729 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
5 eqid 2729 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
6 eqid 2729 . . 3 (ocv‘𝑊) = (ocv‘𝑊)
7 eqid 2729 . . 3 (0g𝑊) = (0g𝑊)
81, 2, 3, 4, 5, 6, 7isobs 21627 . 2 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊) ∧ (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ((ocv‘𝑊)‘𝐵) = {(0g𝑊)})))
98simp1bi 1145 1 (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903  ifcif 4476  {csn 4577  cfv 6482  (class class class)co 7349  Basecbs 17120  Scalarcsca 17164  ·𝑖cip 17166  0gc0g 17343  1rcur 20066  PreHilcphl 21531  ocvcocv 21567  OBasiscobs 21609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-obs 21612
This theorem is referenced by:  obsne0  21632  obs2ocv  21634  obselocv  21635  obslbs  21637
  Copyright terms: Public domain W3C validator