![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obsrcl | Structured version Visualization version GIF version |
Description: Reverse closure for an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsrcl | β’ (π΅ β (OBasisβπ) β π β PreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2724 | . . 3 β’ (Β·πβπ) = (Β·πβπ) | |
3 | eqid 2724 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
4 | eqid 2724 | . . 3 β’ (1rβ(Scalarβπ)) = (1rβ(Scalarβπ)) | |
5 | eqid 2724 | . . 3 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
6 | eqid 2724 | . . 3 β’ (ocvβπ) = (ocvβπ) | |
7 | eqid 2724 | . . 3 β’ (0gβπ) = (0gβπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isobs 21604 | . 2 β’ (π΅ β (OBasisβπ) β (π β PreHil β§ π΅ β (Baseβπ) β§ (βπ₯ β π΅ βπ¦ β π΅ (π₯(Β·πβπ)π¦) = if(π₯ = π¦, (1rβ(Scalarβπ)), (0gβ(Scalarβπ))) β§ ((ocvβπ)βπ΅) = {(0gβπ)}))) |
9 | 8 | simp1bi 1142 | 1 β’ (π΅ β (OBasisβπ) β π β PreHil) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 β wss 3941 ifcif 4521 {csn 4621 βcfv 6534 (class class class)co 7402 Basecbs 17149 Scalarcsca 17205 Β·πcip 17207 0gc0g 17390 1rcur 20082 PreHilcphl 21506 ocvcocv 21542 OBasiscobs 21586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fv 6542 df-ov 7405 df-obs 21589 |
This theorem is referenced by: obsne0 21609 obs2ocv 21611 obselocv 21612 obslbs 21614 |
Copyright terms: Public domain | W3C validator |