![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > obsrcl | Structured version Visualization version GIF version |
Description: Reverse closure for an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
obsrcl | β’ (π΅ β (OBasisβπ) β π β PreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2733 | . . 3 β’ (Β·πβπ) = (Β·πβπ) | |
3 | eqid 2733 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
4 | eqid 2733 | . . 3 β’ (1rβ(Scalarβπ)) = (1rβ(Scalarβπ)) | |
5 | eqid 2733 | . . 3 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
6 | eqid 2733 | . . 3 β’ (ocvβπ) = (ocvβπ) | |
7 | eqid 2733 | . . 3 β’ (0gβπ) = (0gβπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isobs 21275 | . 2 β’ (π΅ β (OBasisβπ) β (π β PreHil β§ π΅ β (Baseβπ) β§ (βπ₯ β π΅ βπ¦ β π΅ (π₯(Β·πβπ)π¦) = if(π₯ = π¦, (1rβ(Scalarβπ)), (0gβ(Scalarβπ))) β§ ((ocvβπ)βπ΅) = {(0gβπ)}))) |
9 | 8 | simp1bi 1146 | 1 β’ (π΅ β (OBasisβπ) β π β PreHil) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 β wss 3949 ifcif 4529 {csn 4629 βcfv 6544 (class class class)co 7409 Basecbs 17144 Scalarcsca 17200 Β·πcip 17202 0gc0g 17385 1rcur 20004 PreHilcphl 21177 ocvcocv 21213 OBasiscobs 21257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-obs 21260 |
This theorem is referenced by: obsne0 21280 obs2ocv 21282 obselocv 21283 obslbs 21285 |
Copyright terms: Public domain | W3C validator |