| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > obsip | Structured version Visualization version GIF version | ||
| Description: The inner product of two elements of an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| Ref | Expression |
|---|---|
| isobs.v | ⊢ 𝑉 = (Base‘𝑊) |
| isobs.h | ⊢ , = (·𝑖‘𝑊) |
| isobs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| isobs.u | ⊢ 1 = (1r‘𝐹) |
| isobs.z | ⊢ 0 = (0g‘𝐹) |
| Ref | Expression |
|---|---|
| obsip | ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isobs.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | isobs.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 3 | isobs.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | isobs.u | . . . . . 6 ⊢ 1 = (1r‘𝐹) | |
| 5 | isobs.z | . . . . . 6 ⊢ 0 = (0g‘𝐹) | |
| 6 | eqid 2733 | . . . . . 6 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 7 | eqid 2733 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isobs 21659 | . . . . 5 ⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ((ocv‘𝑊)‘𝐵) = {(0g‘𝑊)}))) |
| 9 | 8 | simp3bi 1147 | . . . 4 ⊢ (𝐵 ∈ (OBasis‘𝑊) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ((ocv‘𝑊)‘𝐵) = {(0g‘𝑊)})) |
| 10 | 9 | simpld 494 | . . 3 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 )) |
| 11 | oveq1 7359 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑥 , 𝑦) = (𝑃 , 𝑦)) | |
| 12 | eqeq1 2737 | . . . . . 6 ⊢ (𝑥 = 𝑃 → (𝑥 = 𝑦 ↔ 𝑃 = 𝑦)) | |
| 13 | 12 | ifbid 4498 | . . . . 5 ⊢ (𝑥 = 𝑃 → if(𝑥 = 𝑦, 1 , 0 ) = if(𝑃 = 𝑦, 1 , 0 )) |
| 14 | 11, 13 | eqeq12d 2749 | . . . 4 ⊢ (𝑥 = 𝑃 → ((𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ (𝑃 , 𝑦) = if(𝑃 = 𝑦, 1 , 0 ))) |
| 15 | oveq2 7360 | . . . . 5 ⊢ (𝑦 = 𝑄 → (𝑃 , 𝑦) = (𝑃 , 𝑄)) | |
| 16 | eqeq2 2745 | . . . . . 6 ⊢ (𝑦 = 𝑄 → (𝑃 = 𝑦 ↔ 𝑃 = 𝑄)) | |
| 17 | 16 | ifbid 4498 | . . . . 5 ⊢ (𝑦 = 𝑄 → if(𝑃 = 𝑦, 1 , 0 ) = if(𝑃 = 𝑄, 1 , 0 )) |
| 18 | 15, 17 | eqeq12d 2749 | . . . 4 ⊢ (𝑦 = 𝑄 → ((𝑃 , 𝑦) = if(𝑃 = 𝑦, 1 , 0 ) ↔ (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 ))) |
| 19 | 14, 18 | rspc2v 3584 | . . 3 ⊢ ((𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 ))) |
| 20 | 10, 19 | syl5com 31 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ((𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 ))) |
| 21 | 20 | 3impib 1116 | 1 ⊢ ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ifcif 4474 {csn 4575 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Scalarcsca 17166 ·𝑖cip 17168 0gc0g 17345 1rcur 20101 PreHilcphl 21563 ocvcocv 21599 OBasiscobs 21641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-obs 21644 |
| This theorem is referenced by: obsipid 21661 obselocv 21667 |
| Copyright terms: Public domain | W3C validator |