MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsip Structured version   Visualization version   GIF version

Theorem obsip 20909
Description: The inner product of two elements of an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
isobs.v 𝑉 = (Base‘𝑊)
isobs.h , = (·𝑖𝑊)
isobs.f 𝐹 = (Scalar‘𝑊)
isobs.u 1 = (1r𝐹)
isobs.z 0 = (0g𝐹)
Assertion
Ref Expression
obsip ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑃𝐵𝑄𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 ))

Proof of Theorem obsip
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isobs.v . . . . . 6 𝑉 = (Base‘𝑊)
2 isobs.h . . . . . 6 , = (·𝑖𝑊)
3 isobs.f . . . . . 6 𝐹 = (Scalar‘𝑊)
4 isobs.u . . . . . 6 1 = (1r𝐹)
5 isobs.z . . . . . 6 0 = (0g𝐹)
6 eqid 2739 . . . . . 6 (ocv‘𝑊) = (ocv‘𝑊)
7 eqid 2739 . . . . . 6 (0g𝑊) = (0g𝑊)
81, 2, 3, 4, 5, 6, 7isobs 20908 . . . . 5 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵𝑉 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ((ocv‘𝑊)‘𝐵) = {(0g𝑊)})))
98simp3bi 1145 . . . 4 (𝐵 ∈ (OBasis‘𝑊) → (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ∧ ((ocv‘𝑊)‘𝐵) = {(0g𝑊)}))
109simpld 494 . . 3 (𝐵 ∈ (OBasis‘𝑊) → ∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ))
11 oveq1 7275 . . . . 5 (𝑥 = 𝑃 → (𝑥 , 𝑦) = (𝑃 , 𝑦))
12 eqeq1 2743 . . . . . 6 (𝑥 = 𝑃 → (𝑥 = 𝑦𝑃 = 𝑦))
1312ifbid 4487 . . . . 5 (𝑥 = 𝑃 → if(𝑥 = 𝑦, 1 , 0 ) = if(𝑃 = 𝑦, 1 , 0 ))
1411, 13eqeq12d 2755 . . . 4 (𝑥 = 𝑃 → ((𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) ↔ (𝑃 , 𝑦) = if(𝑃 = 𝑦, 1 , 0 )))
15 oveq2 7276 . . . . 5 (𝑦 = 𝑄 → (𝑃 , 𝑦) = (𝑃 , 𝑄))
16 eqeq2 2751 . . . . . 6 (𝑦 = 𝑄 → (𝑃 = 𝑦𝑃 = 𝑄))
1716ifbid 4487 . . . . 5 (𝑦 = 𝑄 → if(𝑃 = 𝑦, 1 , 0 ) = if(𝑃 = 𝑄, 1 , 0 ))
1815, 17eqeq12d 2755 . . . 4 (𝑦 = 𝑄 → ((𝑃 , 𝑦) = if(𝑃 = 𝑦, 1 , 0 ) ↔ (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 )))
1914, 18rspc2v 3570 . . 3 ((𝑃𝐵𝑄𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 , 𝑦) = if(𝑥 = 𝑦, 1 , 0 ) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 )))
2010, 19syl5com 31 . 2 (𝐵 ∈ (OBasis‘𝑊) → ((𝑃𝐵𝑄𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 )))
21203impib 1114 1 ((𝐵 ∈ (OBasis‘𝑊) ∧ 𝑃𝐵𝑄𝐵) → (𝑃 , 𝑄) = if(𝑃 = 𝑄, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065  wss 3891  ifcif 4464  {csn 4566  cfv 6430  (class class class)co 7268  Basecbs 16893  Scalarcsca 16946  ·𝑖cip 16948  0gc0g 17131  1rcur 19718  PreHilcphl 20810  ocvcocv 20846  OBasiscobs 20890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-obs 20893
This theorem is referenced by:  obsipid  20910  obselocv  20916
  Copyright terms: Public domain W3C validator