MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsocv Structured version   Visualization version   GIF version

Theorem obsocv 20843
Description: An orthonormal basis has trivial orthocomplement. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
obsocv.z 0 = (0g𝑊)
obsocv.o = (ocv‘𝑊)
Assertion
Ref Expression
obsocv (𝐵 ∈ (OBasis‘𝑊) → ( 𝐵) = { 0 })

Proof of Theorem obsocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2738 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2738 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2738 . . . 4 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
5 eqid 2738 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
6 obsocv.o . . . 4 = (ocv‘𝑊)
7 obsocv.z . . . 4 0 = (0g𝑊)
81, 2, 3, 4, 5, 6, 7isobs 20837 . . 3 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊) ∧ (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( 𝐵) = { 0 })))
98simp3bi 1145 . 2 (𝐵 ∈ (OBasis‘𝑊) → (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( 𝐵) = { 0 }))
109simprd 495 1 (𝐵 ∈ (OBasis‘𝑊) → ( 𝐵) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  ifcif 4456  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891  ·𝑖cip 16893  0gc0g 17067  1rcur 19652  PreHilcphl 20741  ocvcocv 20777  OBasiscobs 20819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-obs 20822
This theorem is referenced by:  obs2ocv  20844  obs2ss  20846
  Copyright terms: Public domain W3C validator