MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsocv Structured version   Visualization version   GIF version

Theorem obsocv 21641
Description: An orthonormal basis has trivial orthocomplement. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
obsocv.z 0 = (0g𝑊)
obsocv.o = (ocv‘𝑊)
Assertion
Ref Expression
obsocv (𝐵 ∈ (OBasis‘𝑊) → ( 𝐵) = { 0 })

Proof of Theorem obsocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2730 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2730 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2730 . . . 4 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
5 eqid 2730 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
6 obsocv.o . . . 4 = (ocv‘𝑊)
7 obsocv.z . . . 4 0 = (0g𝑊)
81, 2, 3, 4, 5, 6, 7isobs 21635 . . 3 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊) ∧ (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( 𝐵) = { 0 })))
98simp3bi 1147 . 2 (𝐵 ∈ (OBasis‘𝑊) → (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( 𝐵) = { 0 }))
109simprd 495 1 (𝐵 ∈ (OBasis‘𝑊) → ( 𝐵) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3046  wss 3922  ifcif 4496  {csn 4597  cfv 6519  (class class class)co 7394  Basecbs 17185  Scalarcsca 17229  ·𝑖cip 17231  0gc0g 17408  1rcur 20096  PreHilcphl 21539  ocvcocv 21575  OBasiscobs 21617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fv 6527  df-ov 7397  df-obs 21620
This theorem is referenced by:  obs2ocv  21642  obs2ss  21644
  Copyright terms: Public domain W3C validator