| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > obsocv | Structured version Visualization version GIF version | ||
| Description: An orthonormal basis has trivial orthocomplement. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| Ref | Expression |
|---|---|
| obsocv.z | ⊢ 0 = (0g‘𝑊) |
| obsocv.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| obsocv | ⊢ (𝐵 ∈ (OBasis‘𝑊) → ( ⊥ ‘𝐵) = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2729 | . . . 4 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 5 | eqid 2729 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 6 | obsocv.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 7 | obsocv.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isobs 21645 | . . 3 ⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊) ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(·𝑖‘𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( ⊥ ‘𝐵) = { 0 }))) |
| 9 | 8 | simp3bi 1147 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(·𝑖‘𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( ⊥ ‘𝐵) = { 0 })) |
| 10 | 9 | simprd 495 | 1 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ( ⊥ ‘𝐵) = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 ifcif 4478 {csn 4579 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Scalarcsca 17182 ·𝑖cip 17184 0gc0g 17361 1rcur 20084 PreHilcphl 21549 ocvcocv 21585 OBasiscobs 21627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-obs 21630 |
| This theorem is referenced by: obs2ocv 21652 obs2ss 21654 |
| Copyright terms: Public domain | W3C validator |