MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsocv Structured version   Visualization version   GIF version

Theorem obsocv 21747
Description: An orthonormal basis has trivial orthocomplement. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
obsocv.z 0 = (0g𝑊)
obsocv.o = (ocv‘𝑊)
Assertion
Ref Expression
obsocv (𝐵 ∈ (OBasis‘𝑊) → ( 𝐵) = { 0 })

Proof of Theorem obsocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2736 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2736 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2736 . . . 4 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
5 eqid 2736 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
6 obsocv.o . . . 4 = (ocv‘𝑊)
7 obsocv.z . . . 4 0 = (0g𝑊)
81, 2, 3, 4, 5, 6, 7isobs 21741 . . 3 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊) ∧ (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( 𝐵) = { 0 })))
98simp3bi 1147 . 2 (𝐵 ∈ (OBasis‘𝑊) → (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( 𝐵) = { 0 }))
109simprd 495 1 (𝐵 ∈ (OBasis‘𝑊) → ( 𝐵) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  wss 3950  ifcif 4524  {csn 4625  cfv 6560  (class class class)co 7432  Basecbs 17248  Scalarcsca 17301  ·𝑖cip 17303  0gc0g 17485  1rcur 20179  PreHilcphl 21643  ocvcocv 21679  OBasiscobs 21723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fv 6568  df-ov 7435  df-obs 21726
This theorem is referenced by:  obs2ocv  21748  obs2ss  21750
  Copyright terms: Public domain W3C validator