|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > obsocv | Structured version Visualization version GIF version | ||
| Description: An orthonormal basis has trivial orthocomplement. (Contributed by Mario Carneiro, 23-Oct-2015.) | 
| Ref | Expression | 
|---|---|
| obsocv.z | ⊢ 0 = (0g‘𝑊) | 
| obsocv.o | ⊢ ⊥ = (ocv‘𝑊) | 
| Ref | Expression | 
|---|---|
| obsocv | ⊢ (𝐵 ∈ (OBasis‘𝑊) → ( ⊥ ‘𝐵) = { 0 }) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2736 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2736 | . . . 4 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 5 | eqid 2736 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 6 | obsocv.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 7 | obsocv.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isobs 21741 | . . 3 ⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊) ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(·𝑖‘𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( ⊥ ‘𝐵) = { 0 }))) | 
| 9 | 8 | simp3bi 1147 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(·𝑖‘𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( ⊥ ‘𝐵) = { 0 })) | 
| 10 | 9 | simprd 495 | 1 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ( ⊥ ‘𝐵) = { 0 }) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ⊆ wss 3950 ifcif 4524 {csn 4625 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Scalarcsca 17301 ·𝑖cip 17303 0gc0g 17485 1rcur 20179 PreHilcphl 21643 ocvcocv 21679 OBasiscobs 21723 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-obs 21726 | 
| This theorem is referenced by: obs2ocv 21748 obs2ss 21750 | 
| Copyright terms: Public domain | W3C validator |