| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > obsocv | Structured version Visualization version GIF version | ||
| Description: An orthonormal basis has trivial orthocomplement. (Contributed by Mario Carneiro, 23-Oct-2015.) |
| Ref | Expression |
|---|---|
| obsocv.z | ⊢ 0 = (0g‘𝑊) |
| obsocv.o | ⊢ ⊥ = (ocv‘𝑊) |
| Ref | Expression |
|---|---|
| obsocv | ⊢ (𝐵 ∈ (OBasis‘𝑊) → ( ⊥ ‘𝐵) = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2730 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 3 | eqid 2730 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 4 | eqid 2730 | . . . 4 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
| 5 | eqid 2730 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 6 | obsocv.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 7 | obsocv.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isobs 21636 | . . 3 ⊢ (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊) ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(·𝑖‘𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( ⊥ ‘𝐵) = { 0 }))) |
| 9 | 8 | simp3bi 1147 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(·𝑖‘𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( ⊥ ‘𝐵) = { 0 })) |
| 10 | 9 | simprd 495 | 1 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ( ⊥ ‘𝐵) = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ifcif 4491 {csn 4592 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Scalarcsca 17230 ·𝑖cip 17232 0gc0g 17409 1rcur 20097 PreHilcphl 21540 ocvcocv 21576 OBasiscobs 21618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-obs 21621 |
| This theorem is referenced by: obs2ocv 21643 obs2ss 21645 |
| Copyright terms: Public domain | W3C validator |