|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > obs2ocv | Structured version Visualization version GIF version | ||
| Description: The double orthocomplement (closure) of an orthonormal basis is the whole space. (Contributed by Mario Carneiro, 23-Oct-2015.) | 
| Ref | Expression | 
|---|---|
| obs2ocv.o | ⊢ ⊥ = (ocv‘𝑊) | 
| obs2ocv.v | ⊢ 𝑉 = (Base‘𝑊) | 
| Ref | Expression | 
|---|---|
| obs2ocv | ⊢ (𝐵 ∈ (OBasis‘𝑊) → ( ⊥ ‘( ⊥ ‘𝐵)) = 𝑉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 2 | obs2ocv.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
| 3 | 1, 2 | obsocv 21747 | . . 3 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ( ⊥ ‘𝐵) = {(0g‘𝑊)}) | 
| 4 | 3 | fveq2d 6909 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ( ⊥ ‘( ⊥ ‘𝐵)) = ( ⊥ ‘{(0g‘𝑊)})) | 
| 5 | obsrcl 21744 | . . 3 ⊢ (𝐵 ∈ (OBasis‘𝑊) → 𝑊 ∈ PreHil) | |
| 6 | obs2ocv.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 7 | 6, 2, 1 | ocvz 21697 | . . 3 ⊢ (𝑊 ∈ PreHil → ( ⊥ ‘{(0g‘𝑊)}) = 𝑉) | 
| 8 | 5, 7 | syl 17 | . 2 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ( ⊥ ‘{(0g‘𝑊)}) = 𝑉) | 
| 9 | 4, 8 | eqtrd 2776 | 1 ⊢ (𝐵 ∈ (OBasis‘𝑊) → ( ⊥ ‘( ⊥ ‘𝐵)) = 𝑉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4625 ‘cfv 6560 Basecbs 17248 0gc0g 17485 PreHilcphl 21643 ocvcocv 21679 OBasiscobs 21723 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-grp 18955 df-minusg 18956 df-sbg 18957 df-ghm 19232 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-oppr 20335 df-rhm 20473 df-staf 20841 df-srng 20842 df-lmod 20861 df-lss 20931 df-lsp 20971 df-lmhm 21022 df-lvec 21103 df-sra 21173 df-rgmod 21174 df-phl 21645 df-ocv 21682 df-obs 21726 | 
| This theorem is referenced by: obslbs 21751 | 
| Copyright terms: Public domain | W3C validator |