![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onnmin | Structured version Visualization version GIF version |
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) |
Ref | Expression |
---|---|
onnmin | ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 4967 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝐵) | |
2 | 1 | adantl 480 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐵) |
3 | ne0i 4334 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) | |
4 | oninton 7799 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) | |
5 | 3, 4 | sylan2 591 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ∩ 𝐴 ∈ On) |
6 | ssel2 3971 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
7 | ontri1 6405 | . . 3 ⊢ ((∩ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴)) | |
8 | 5, 6, 7 | syl2anc 582 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → (∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴)) |
9 | 2, 8 | mpbid 231 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ≠ wne 2929 ⊆ wss 3944 ∅c0 4322 ∩ cint 4950 Oncon0 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-ord 6374 df-on 6375 |
This theorem is referenced by: onnminsb 7803 oneqmin 7804 onmindif2 7811 cardmin2 10029 ackbij1lem18 10267 cofsmo 10299 fin23lem26 10355 lrrecfr 27911 |
Copyright terms: Public domain | W3C validator |