MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnmin Structured version   Visualization version   GIF version

Theorem onnmin 7777
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.)
Assertion
Ref Expression
onnmin ((𝐴 ⊆ On ∧ 𝐵𝐴) → ¬ 𝐵 𝐴)

Proof of Theorem onnmin
StepHypRef Expression
1 intss1 4930 . . 3 (𝐵𝐴 𝐴𝐵)
21adantl 481 . 2 ((𝐴 ⊆ On ∧ 𝐵𝐴) → 𝐴𝐵)
3 ne0i 4307 . . . 4 (𝐵𝐴𝐴 ≠ ∅)
4 oninton 7774 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
53, 4sylan2 593 . . 3 ((𝐴 ⊆ On ∧ 𝐵𝐴) → 𝐴 ∈ On)
6 ssel2 3944 . . 3 ((𝐴 ⊆ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
7 ontri1 6369 . . 3 (( 𝐴 ∈ On ∧ 𝐵 ∈ On) → ( 𝐴𝐵 ↔ ¬ 𝐵 𝐴))
85, 6, 7syl2anc 584 . 2 ((𝐴 ⊆ On ∧ 𝐵𝐴) → ( 𝐴𝐵 ↔ ¬ 𝐵 𝐴))
92, 8mpbid 232 1 ((𝐴 ⊆ On ∧ 𝐵𝐴) → ¬ 𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wne 2926  wss 3917  c0 4299   cint 4913  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339
This theorem is referenced by:  onnminsb  7778  oneqmin  7779  onmindif2  7786  cardmin2  9959  ackbij1lem18  10196  cofsmo  10229  fin23lem26  10285  lrrecfr  27857
  Copyright terms: Public domain W3C validator