MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnmin Structured version   Visualization version   GIF version

Theorem onnmin 7800
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.)
Assertion
Ref Expression
onnmin ((𝐴 ⊆ On ∧ 𝐵𝐴) → ¬ 𝐵 𝐴)

Proof of Theorem onnmin
StepHypRef Expression
1 intss1 4943 . . 3 (𝐵𝐴 𝐴𝐵)
21adantl 481 . 2 ((𝐴 ⊆ On ∧ 𝐵𝐴) → 𝐴𝐵)
3 ne0i 4321 . . . 4 (𝐵𝐴𝐴 ≠ ∅)
4 oninton 7797 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
53, 4sylan2 593 . . 3 ((𝐴 ⊆ On ∧ 𝐵𝐴) → 𝐴 ∈ On)
6 ssel2 3958 . . 3 ((𝐴 ⊆ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
7 ontri1 6397 . . 3 (( 𝐴 ∈ On ∧ 𝐵 ∈ On) → ( 𝐴𝐵 ↔ ¬ 𝐵 𝐴))
85, 6, 7syl2anc 584 . 2 ((𝐴 ⊆ On ∧ 𝐵𝐴) → ( 𝐴𝐵 ↔ ¬ 𝐵 𝐴))
92, 8mpbid 232 1 ((𝐴 ⊆ On ∧ 𝐵𝐴) → ¬ 𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2107  wne 2931  wss 3931  c0 4313   cint 4926  Oncon0 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367
This theorem is referenced by:  onnminsb  7801  oneqmin  7802  onmindif2  7809  cardmin2  10021  ackbij1lem18  10258  cofsmo  10291  fin23lem26  10347  lrrecfr  27912
  Copyright terms: Public domain W3C validator