| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onnmin | Structured version Visualization version GIF version | ||
| Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) |
| Ref | Expression |
|---|---|
| onnmin | ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intss1 4916 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝐵) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐵) |
| 3 | ne0i 4294 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 4 | oninton 7735 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) | |
| 5 | 3, 4 | sylan2 593 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ∩ 𝐴 ∈ On) |
| 6 | ssel2 3932 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
| 7 | ontri1 6345 | . . 3 ⊢ ((∩ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → (∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴)) |
| 9 | 2, 8 | mpbid 232 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3905 ∅c0 4286 ∩ cint 4899 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 |
| This theorem is referenced by: onnminsb 7739 oneqmin 7740 onmindif2 7747 cardmin2 9914 ackbij1lem18 10149 cofsmo 10182 fin23lem26 10238 lrrecfr 27873 |
| Copyright terms: Public domain | W3C validator |