![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onnmin | Structured version Visualization version GIF version |
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) |
Ref | Expression |
---|---|
onnmin | ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 4971 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝐵) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐵) |
3 | ne0i 4350 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) | |
4 | oninton 7822 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) | |
5 | 3, 4 | sylan2 593 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ∩ 𝐴 ∈ On) |
6 | ssel2 3993 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
7 | ontri1 6426 | . . 3 ⊢ ((∩ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴)) | |
8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → (∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴)) |
9 | 2, 8 | mpbid 232 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 ⊆ wss 3966 ∅c0 4342 ∩ cint 4954 Oncon0 6392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-br 5152 df-opab 5214 df-tr 5269 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-ord 6395 df-on 6396 |
This theorem is referenced by: onnminsb 7826 oneqmin 7827 onmindif2 7834 cardmin2 10046 ackbij1lem18 10283 cofsmo 10316 fin23lem26 10372 lrrecfr 28002 |
Copyright terms: Public domain | W3C validator |