| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onnmin | Structured version Visualization version GIF version | ||
| Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) |
| Ref | Expression |
|---|---|
| onnmin | ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intss1 4943 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝐵) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐵) |
| 3 | ne0i 4321 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) | |
| 4 | oninton 7797 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) | |
| 5 | 3, 4 | sylan2 593 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ∩ 𝐴 ∈ On) |
| 6 | ssel2 3958 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
| 7 | ontri1 6397 | . . 3 ⊢ ((∩ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴)) | |
| 8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → (∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴)) |
| 9 | 2, 8 | mpbid 232 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ≠ wne 2931 ⊆ wss 3931 ∅c0 4313 ∩ cint 4926 Oncon0 6363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-br 5124 df-opab 5186 df-tr 5240 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-on 6367 |
| This theorem is referenced by: onnminsb 7801 oneqmin 7802 onmindif2 7809 cardmin2 10021 ackbij1lem18 10258 cofsmo 10291 fin23lem26 10347 lrrecfr 27912 |
| Copyright terms: Public domain | W3C validator |