Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onnmin | Structured version Visualization version GIF version |
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) |
Ref | Expression |
---|---|
onnmin | ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 4896 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝐵) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ∩ 𝐴 ⊆ 𝐵) |
3 | ne0i 4270 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) | |
4 | oninton 7645 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ On) | |
5 | 3, 4 | sylan2 593 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ∩ 𝐴 ∈ On) |
6 | ssel2 3917 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) | |
7 | ontri1 6302 | . . 3 ⊢ ((∩ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴)) | |
8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → (∩ 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ∩ 𝐴)) |
9 | 2, 8 | mpbid 231 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3888 ∅c0 4258 ∩ cint 4881 Oncon0 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pr 5354 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-br 5077 df-opab 5139 df-tr 5194 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-ord 6271 df-on 6272 |
This theorem is referenced by: onnminsb 7649 oneqmin 7650 onmindif2 7657 cardmin2 9755 ackbij1lem18 9991 cofsmo 10023 fin23lem26 10079 lrrecfr 34097 |
Copyright terms: Public domain | W3C validator |