MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnmin Structured version   Visualization version   GIF version

Theorem onnmin 7786
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.)
Assertion
Ref Expression
onnmin ((𝐴 ⊆ On ∧ 𝐵𝐴) → ¬ 𝐵 𝐴)

Proof of Theorem onnmin
StepHypRef Expression
1 intss1 4968 . . 3 (𝐵𝐴 𝐴𝐵)
21adantl 483 . 2 ((𝐴 ⊆ On ∧ 𝐵𝐴) → 𝐴𝐵)
3 ne0i 4335 . . . 4 (𝐵𝐴𝐴 ≠ ∅)
4 oninton 7783 . . . 4 ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
53, 4sylan2 594 . . 3 ((𝐴 ⊆ On ∧ 𝐵𝐴) → 𝐴 ∈ On)
6 ssel2 3978 . . 3 ((𝐴 ⊆ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
7 ontri1 6399 . . 3 (( 𝐴 ∈ On ∧ 𝐵 ∈ On) → ( 𝐴𝐵 ↔ ¬ 𝐵 𝐴))
85, 6, 7syl2anc 585 . 2 ((𝐴 ⊆ On ∧ 𝐵𝐴) → ( 𝐴𝐵 ↔ ¬ 𝐵 𝐴))
92, 8mpbid 231 1 ((𝐴 ⊆ On ∧ 𝐵𝐴) → ¬ 𝐵 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  wne 2941  wss 3949  c0 4323   cint 4951  Oncon0 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369
This theorem is referenced by:  onnminsb  7787  oneqmin  7788  onmindif2  7795  cardmin2  9994  ackbij1lem18  10232  cofsmo  10264  fin23lem26  10320  lrrecfr  27427
  Copyright terms: Public domain W3C validator