MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnminsb Structured version   Visualization version   GIF version

Theorem onnminsb 7739
Description: An ordinal number smaller than the minimum of a set of ordinal numbers does not have the property determining that set. 𝜓 is the wff resulting from the substitution of 𝐴 for 𝑥 in wff 𝜑. (Contributed by NM, 9-Nov-2003.)
Hypothesis
Ref Expression
onnminsb.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
onnminsb (𝐴 ∈ On → (𝐴 {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem onnminsb
StepHypRef Expression
1 onnminsb.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 3650 . . . 4 (𝐴 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝐴 ∈ On ∧ 𝜓))
3 ssrab2 4042 . . . . 5 {𝑥 ∈ On ∣ 𝜑} ⊆ On
4 onnmin 7738 . . . . 5 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ 𝐴 ∈ {𝑥 ∈ On ∣ 𝜑}) → ¬ 𝐴 {𝑥 ∈ On ∣ 𝜑})
53, 4mpan 689 . . . 4 (𝐴 ∈ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝐴 {𝑥 ∈ On ∣ 𝜑})
62, 5sylbir 234 . . 3 ((𝐴 ∈ On ∧ 𝜓) → ¬ 𝐴 {𝑥 ∈ On ∣ 𝜑})
76ex 414 . 2 (𝐴 ∈ On → (𝜓 → ¬ 𝐴 {𝑥 ∈ On ∣ 𝜑}))
87con2d 134 1 (𝐴 ∈ On → (𝐴 {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {crab 3410  wss 3915   cint 4912  Oncon0 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-br 5111  df-opab 5173  df-tr 5228  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-ord 6325  df-on 6326
This theorem is referenced by:  onminex  7742  oawordeulem  8506  oeeulem  8553  nnawordex  8589  tcrank  9827  alephnbtwn  10014  cardaleph  10032  cardmin  10507  sltval2  27020  nosepeq  27049  nosupbnd2lem1  27079  noinfbnd2lem1  27094  naddwordnexlem4  41747
  Copyright terms: Public domain W3C validator