| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onnminsb | Structured version Visualization version GIF version | ||
| Description: An ordinal number smaller than the minimum of a set of ordinal numbers does not have the property determining that set. 𝜓 is the wff resulting from the substitution of 𝐴 for 𝑥 in wff 𝜑. (Contributed by NM, 9-Nov-2003.) |
| Ref | Expression |
|---|---|
| onnminsb.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| onnminsb | ⊢ (𝐴 ∈ On → (𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onnminsb.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3656 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝐴 ∈ On ∧ 𝜓)) |
| 3 | ssrab2 4039 | . . . . 5 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
| 4 | onnmin 7754 | . . . . 5 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ 𝐴 ∈ {𝑥 ∈ On ∣ 𝜑}) → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑}) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑}) |
| 6 | 2, 5 | sylbir 235 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝜓) → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑}) |
| 7 | 6 | ex 412 | . 2 ⊢ (𝐴 ∈ On → (𝜓 → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑})) |
| 8 | 7 | con2d 134 | 1 ⊢ (𝐴 ∈ On → (𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 ⊆ wss 3911 ∩ cint 4906 Oncon0 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 |
| This theorem is referenced by: onminex 7758 oawordeulem 8495 oeeulem 8542 nnawordex 8578 tcrank 9813 alephnbtwn 10000 cardaleph 10018 cardmin 10493 sltval2 27544 nosepeq 27573 nosupbnd2lem1 27603 noinfbnd2lem1 27618 onvf1odlem4 35066 naddwordnexlem4 43363 |
| Copyright terms: Public domain | W3C validator |