MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnminsb Structured version   Visualization version   GIF version

Theorem onnminsb 7202
Description: An ordinal number smaller than the minimum of a set of ordinal numbers does not have the property determining that set. 𝜓 is the wff resulting from the substitution of 𝐴 for 𝑥 in wff 𝜑. (Contributed by NM, 9-Nov-2003.)
Hypothesis
Ref Expression
onnminsb.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
onnminsb (𝐴 ∈ On → (𝐴 {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem onnminsb
StepHypRef Expression
1 onnminsb.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 3519 . . . 4 (𝐴 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝐴 ∈ On ∧ 𝜓))
3 ssrab2 3847 . . . . 5 {𝑥 ∈ On ∣ 𝜑} ⊆ On
4 onnmin 7201 . . . . 5 (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ 𝐴 ∈ {𝑥 ∈ On ∣ 𝜑}) → ¬ 𝐴 {𝑥 ∈ On ∣ 𝜑})
53, 4mpan 681 . . . 4 (𝐴 ∈ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝐴 {𝑥 ∈ On ∣ 𝜑})
62, 5sylbir 226 . . 3 ((𝐴 ∈ On ∧ 𝜓) → ¬ 𝐴 {𝑥 ∈ On ∣ 𝜑})
76ex 401 . 2 (𝐴 ∈ On → (𝜓 → ¬ 𝐴 {𝑥 ∈ On ∣ 𝜑}))
87con2d 131 1 (𝐴 ∈ On → (𝐴 {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  {crab 3059  wss 3732   cint 4633  Oncon0 5908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-br 4810  df-opab 4872  df-tr 4912  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-ord 5911  df-on 5912
This theorem is referenced by:  onminex  7205  oawordeulem  7839  oeeulem  7886  nnawordex  7922  tcrank  8962  alephnbtwn  9145  cardaleph  9163  cardmin  9639  sltval2  32253  nosepeq  32279  nosupbnd2lem1  32305
  Copyright terms: Public domain W3C validator