![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onnminsb | Structured version Visualization version GIF version |
Description: An ordinal number smaller than the minimum of a set of ordinal numbers does not have the property determining that set. 𝜓 is the wff resulting from the substitution of 𝐴 for 𝑥 in wff 𝜑. (Contributed by NM, 9-Nov-2003.) |
Ref | Expression |
---|---|
onnminsb.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
onnminsb | ⊢ (𝐴 ∈ On → (𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onnminsb.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3683 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝐴 ∈ On ∧ 𝜓)) |
3 | ssrab2 4077 | . . . . 5 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
4 | onnmin 7788 | . . . . 5 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ 𝐴 ∈ {𝑥 ∈ On ∣ 𝜑}) → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑}) | |
5 | 3, 4 | mpan 688 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑}) |
6 | 2, 5 | sylbir 234 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝜓) → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑}) |
7 | 6 | ex 413 | . 2 ⊢ (𝐴 ∈ On → (𝜓 → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑})) |
8 | 7 | con2d 134 | 1 ⊢ (𝐴 ∈ On → (𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 ⊆ wss 3948 ∩ cint 4950 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 |
This theorem is referenced by: onminex 7792 oawordeulem 8556 oeeulem 8603 nnawordex 8639 tcrank 9881 alephnbtwn 10068 cardaleph 10086 cardmin 10561 sltval2 27383 nosepeq 27412 nosupbnd2lem1 27442 noinfbnd2lem1 27457 naddwordnexlem4 42454 |
Copyright terms: Public domain | W3C validator |