| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onnminsb | Structured version Visualization version GIF version | ||
| Description: An ordinal number smaller than the minimum of a set of ordinal numbers does not have the property determining that set. 𝜓 is the wff resulting from the substitution of 𝐴 for 𝑥 in wff 𝜑. (Contributed by NM, 9-Nov-2003.) |
| Ref | Expression |
|---|---|
| onnminsb.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| onnminsb | ⊢ (𝐴 ∈ On → (𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onnminsb.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3676 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∈ On ∣ 𝜑} ↔ (𝐴 ∈ On ∧ 𝜓)) |
| 3 | ssrab2 4060 | . . . . 5 ⊢ {𝑥 ∈ On ∣ 𝜑} ⊆ On | |
| 4 | onnmin 7797 | . . . . 5 ⊢ (({𝑥 ∈ On ∣ 𝜑} ⊆ On ∧ 𝐴 ∈ {𝑥 ∈ On ∣ 𝜑}) → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑}) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑}) |
| 6 | 2, 5 | sylbir 235 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝜓) → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑}) |
| 7 | 6 | ex 412 | . 2 ⊢ (𝐴 ∈ On → (𝜓 → ¬ 𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑})) |
| 8 | 7 | con2d 134 | 1 ⊢ (𝐴 ∈ On → (𝐴 ∈ ∩ {𝑥 ∈ On ∣ 𝜑} → ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 ⊆ wss 3931 ∩ cint 4927 Oncon0 6357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 |
| This theorem is referenced by: onminex 7801 oawordeulem 8571 oeeulem 8618 nnawordex 8654 tcrank 9903 alephnbtwn 10090 cardaleph 10108 cardmin 10583 sltval2 27625 nosepeq 27654 nosupbnd2lem1 27684 noinfbnd2lem1 27699 naddwordnexlem4 43392 |
| Copyright terms: Public domain | W3C validator |