Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opf2fval Structured version   Visualization version   GIF version

Theorem opf2fval 49566
Description: The morphism part of the op functor on functor categories. Lemma for fucoppc 49571. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
opf2fval.f (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ( I ↾ (𝑦𝑁𝑥))))
opf2fval.x (𝜑𝑋𝐴)
opf2fval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
opf2fval (𝜑 → (𝑋𝐹𝑌) = ( I ↾ (𝑌𝑁𝑋)))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem opf2fval
StepHypRef Expression
1 opf2fval.f . 2 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ( I ↾ (𝑦𝑁𝑥))))
2 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
3 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
42, 3oveq12d 7373 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦𝑁𝑥) = (𝑌𝑁𝑋))
54reseq2d 5935 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ( I ↾ (𝑦𝑁𝑥)) = ( I ↾ (𝑌𝑁𝑋)))
6 opf2fval.x . 2 (𝜑𝑋𝐴)
7 opf2fval.y . 2 (𝜑𝑌𝐵)
8 ovexd 7390 . . 3 (𝜑 → (𝑌𝑁𝑋) ∈ V)
9 resiexg 7851 . . 3 ((𝑌𝑁𝑋) ∈ V → ( I ↾ (𝑌𝑁𝑋)) ∈ V)
108, 9syl 17 . 2 (𝜑 → ( I ↾ (𝑌𝑁𝑋)) ∈ V)
111, 5, 6, 7, 10ovmpod 7507 1 (𝜑 → (𝑋𝐹𝑌) = ( I ↾ (𝑌𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437   I cid 5515  cres 5623  (class class class)co 7355  cmpo 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-res 5633  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360
This theorem is referenced by:  opf2  49567  fucoppc  49571
  Copyright terms: Public domain W3C validator