| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opf2fval | Structured version Visualization version GIF version | ||
| Description: The morphism part of the op functor on functor categories. Lemma for fucoppc 49372. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| opf2fval.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| opf2fval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| opf2fval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| opf2fval | ⊢ (𝜑 → (𝑋𝐹𝑌) = ( I ↾ (𝑌𝑁𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opf2fval.f | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑦𝑁𝑥)))) | |
| 2 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
| 3 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
| 4 | 2, 3 | oveq12d 7387 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑦𝑁𝑥) = (𝑌𝑁𝑋)) |
| 5 | 4 | reseq2d 5939 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ( I ↾ (𝑦𝑁𝑥)) = ( I ↾ (𝑌𝑁𝑋))) |
| 6 | opf2fval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 7 | opf2fval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | ovexd 7404 | . . 3 ⊢ (𝜑 → (𝑌𝑁𝑋) ∈ V) | |
| 9 | resiexg 7868 | . . 3 ⊢ ((𝑌𝑁𝑋) ∈ V → ( I ↾ (𝑌𝑁𝑋)) ∈ V) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → ( I ↾ (𝑌𝑁𝑋)) ∈ V) |
| 11 | 1, 5, 6, 7, 10 | ovmpod 7521 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) = ( I ↾ (𝑌𝑁𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 I cid 5525 ↾ cres 5633 (class class class)co 7369 ∈ cmpo 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 |
| This theorem is referenced by: opf2 49368 fucoppc 49372 |
| Copyright terms: Public domain | W3C validator |