Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opf2fval Structured version   Visualization version   GIF version

Theorem opf2fval 49374
Description: The morphism part of the op functor on functor categories. Lemma for fucoppc 49379. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
opf2fval.f (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ( I ↾ (𝑦𝑁𝑥))))
opf2fval.x (𝜑𝑋𝐴)
opf2fval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
opf2fval (𝜑 → (𝑋𝐹𝑌) = ( I ↾ (𝑌𝑁𝑋)))
Distinct variable groups:   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem opf2fval
StepHypRef Expression
1 opf2fval.f . 2 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ( I ↾ (𝑦𝑁𝑥))))
2 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
3 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
42, 3oveq12d 7407 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦𝑁𝑥) = (𝑌𝑁𝑋))
54reseq2d 5952 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ( I ↾ (𝑦𝑁𝑥)) = ( I ↾ (𝑌𝑁𝑋)))
6 opf2fval.x . 2 (𝜑𝑋𝐴)
7 opf2fval.y . 2 (𝜑𝑌𝐵)
8 ovexd 7424 . . 3 (𝜑 → (𝑌𝑁𝑋) ∈ V)
9 resiexg 7890 . . 3 ((𝑌𝑁𝑋) ∈ V → ( I ↾ (𝑌𝑁𝑋)) ∈ V)
108, 9syl 17 . 2 (𝜑 → ( I ↾ (𝑌𝑁𝑋)) ∈ V)
111, 5, 6, 7, 10ovmpod 7543 1 (𝜑 → (𝑋𝐹𝑌) = ( I ↾ (𝑌𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450   I cid 5534  cres 5642  (class class class)co 7389  cmpo 7391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-res 5652  df-iota 6466  df-fun 6515  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394
This theorem is referenced by:  opf2  49375  fucoppc  49379
  Copyright terms: Public domain W3C validator