| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opf2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of the op functor on functor categories. Lemma for fucoppc 49379. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| opf2fval.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| opf2fval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| opf2fval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| opf2.c | ⊢ (𝜑 → 𝐶 = 𝐷) |
| opf2.d | ⊢ (𝜑 → 𝐷 ∈ (𝑌𝑁𝑋)) |
| Ref | Expression |
|---|---|
| opf2 | ⊢ (𝜑 → ((𝑋𝐹𝑌)‘𝐶) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opf2fval.f | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑦𝑁𝑥)))) | |
| 2 | opf2fval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 3 | opf2fval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | 1, 2, 3 | opf2fval 49374 | . . 3 ⊢ (𝜑 → (𝑋𝐹𝑌) = ( I ↾ (𝑌𝑁𝑋))) |
| 5 | opf2.c | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 6 | 4, 5 | fveq12d 6867 | . 2 ⊢ (𝜑 → ((𝑋𝐹𝑌)‘𝐶) = (( I ↾ (𝑌𝑁𝑋))‘𝐷)) |
| 7 | opf2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ (𝑌𝑁𝑋)) | |
| 8 | fvresi 7149 | . . 3 ⊢ (𝐷 ∈ (𝑌𝑁𝑋) → (( I ↾ (𝑌𝑁𝑋))‘𝐷) = 𝐷) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (( I ↾ (𝑌𝑁𝑋))‘𝐷) = 𝐷) |
| 10 | 6, 9 | eqtrd 2765 | 1 ⊢ (𝜑 → ((𝑋𝐹𝑌)‘𝐶) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 I cid 5534 ↾ cres 5642 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-res 5652 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 |
| This theorem is referenced by: fucoppcid 49377 fucoppcco 49378 oppfdiag 49385 lmddu 49635 |
| Copyright terms: Public domain | W3C validator |