| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opf2 | Structured version Visualization version GIF version | ||
| Description: The morphism part of the op functor on functor categories. Lemma for fucoppc 49442. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| opf2fval.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| opf2fval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| opf2fval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| opf2.c | ⊢ (𝜑 → 𝐶 = 𝐷) |
| opf2.d | ⊢ (𝜑 → 𝐷 ∈ (𝑌𝑁𝑋)) |
| Ref | Expression |
|---|---|
| opf2 | ⊢ (𝜑 → ((𝑋𝐹𝑌)‘𝐶) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opf2fval.f | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑦𝑁𝑥)))) | |
| 2 | opf2fval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 3 | opf2fval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | 1, 2, 3 | opf2fval 49437 | . . 3 ⊢ (𝜑 → (𝑋𝐹𝑌) = ( I ↾ (𝑌𝑁𝑋))) |
| 5 | opf2.c | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 6 | 4, 5 | fveq12d 6824 | . 2 ⊢ (𝜑 → ((𝑋𝐹𝑌)‘𝐶) = (( I ↾ (𝑌𝑁𝑋))‘𝐷)) |
| 7 | opf2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ (𝑌𝑁𝑋)) | |
| 8 | fvresi 7102 | . . 3 ⊢ (𝐷 ∈ (𝑌𝑁𝑋) → (( I ↾ (𝑌𝑁𝑋))‘𝐷) = 𝐷) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (( I ↾ (𝑌𝑁𝑋))‘𝐷) = 𝐷) |
| 10 | 6, 9 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝑋𝐹𝑌)‘𝐶) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 I cid 5505 ↾ cres 5613 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-res 5623 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 |
| This theorem is referenced by: fucoppcid 49440 fucoppcco 49441 oppfdiag 49448 lmddu 49699 |
| Copyright terms: Public domain | W3C validator |