Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoppc Structured version   Visualization version   GIF version

Theorem fucoppc 49442
Description: The isomorphism from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
fucoppc.o 𝑂 = (oppCat‘𝐶)
fucoppc.p 𝑃 = (oppCat‘𝐷)
fucoppc.q 𝑄 = (𝐶 FuncCat 𝐷)
fucoppc.r 𝑅 = (oppCat‘𝑄)
fucoppc.s 𝑆 = (𝑂 FuncCat 𝑃)
fucoppc.n 𝑁 = (𝐶 Nat 𝐷)
fucoppc.f (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
fucoppc.g (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
fucoppc.t 𝑇 = (CatCat‘𝑈)
fucoppc.b 𝐵 = (Base‘𝑇)
fucoppc.i 𝐼 = (Iso‘𝑇)
fucoppc.c (𝜑𝐶𝑉)
fucoppc.d (𝜑𝐷𝑊)
fucoppc.1 (𝜑𝑅𝐵)
fucoppc.2 (𝜑𝑆𝐵)
Assertion
Ref Expression
fucoppc (𝜑𝐹(𝑅𝐼𝑆)𝐺)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem fucoppc
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucoppc.r . . . . . . 7 𝑅 = (oppCat‘𝑄)
2 fucoppc.q . . . . . . . 8 𝑄 = (𝐶 FuncCat 𝐷)
32fucbas 17865 . . . . . . 7 (𝐶 Func 𝐷) = (Base‘𝑄)
41, 3oppcbas 17619 . . . . . 6 (𝐶 Func 𝐷) = (Base‘𝑅)
5 fucoppc.s . . . . . . 7 𝑆 = (𝑂 FuncCat 𝑃)
65fucbas 17865 . . . . . 6 (𝑂 Func 𝑃) = (Base‘𝑆)
7 eqid 2731 . . . . . 6 (Hom ‘𝑅) = (Hom ‘𝑅)
8 eqid 2731 . . . . . . 7 (𝑂 Nat 𝑃) = (𝑂 Nat 𝑃)
95, 8fuchom 17866 . . . . . 6 (𝑂 Nat 𝑃) = (Hom ‘𝑆)
10 eqid 2731 . . . . . 6 (Id‘𝑅) = (Id‘𝑅)
11 eqid 2731 . . . . . 6 (Id‘𝑆) = (Id‘𝑆)
12 eqid 2731 . . . . . 6 (comp‘𝑅) = (comp‘𝑅)
13 eqid 2731 . . . . . 6 (comp‘𝑆) = (comp‘𝑆)
14 fucoppc.1 . . . . . . . 8 (𝜑𝑅𝐵)
15 fucoppc.t . . . . . . . . 9 𝑇 = (CatCat‘𝑈)
16 fucoppc.b . . . . . . . . 9 𝐵 = (Base‘𝑇)
1715, 16elbasfv 17121 . . . . . . . . . 10 (𝑅𝐵𝑈 ∈ V)
1814, 17syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ V)
1915, 16, 18catcbas 18003 . . . . . . . 8 (𝜑𝐵 = (𝑈 ∩ Cat))
2014, 19eleqtrd 2833 . . . . . . 7 (𝜑𝑅 ∈ (𝑈 ∩ Cat))
2120elin2d 4150 . . . . . 6 (𝜑𝑅 ∈ Cat)
22 fucoppc.2 . . . . . . . 8 (𝜑𝑆𝐵)
2322, 19eleqtrd 2833 . . . . . . 7 (𝜑𝑆 ∈ (𝑈 ∩ Cat))
2423elin2d 4150 . . . . . 6 (𝜑𝑆 ∈ Cat)
25 fucoppc.o . . . . . . . . 9 𝑂 = (oppCat‘𝐶)
26 fucoppc.p . . . . . . . . 9 𝑃 = (oppCat‘𝐷)
27 fucoppc.c . . . . . . . . 9 (𝜑𝐶𝑉)
28 fucoppc.d . . . . . . . . 9 (𝜑𝐷𝑊)
2925, 26, 27, 28oppff1o 49181 . . . . . . . 8 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))
30 fucoppc.f . . . . . . . . 9 (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
3130f1oeq1d 6753 . . . . . . . 8 (𝜑 → (𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) ↔ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)))
3229, 31mpbird 257 . . . . . . 7 (𝜑𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))
33 f1of 6758 . . . . . . 7 (𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) → 𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))
3432, 33syl 17 . . . . . 6 (𝜑𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))
35 eqid 2731 . . . . . . . 8 (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))) = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))
36 ovex 7374 . . . . . . . . 9 (𝑦𝑁𝑥) ∈ V
37 resiexg 7837 . . . . . . . . 9 ((𝑦𝑁𝑥) ∈ V → ( I ↾ (𝑦𝑁𝑥)) ∈ V)
3836, 37ax-mp 5 . . . . . . . 8 ( I ↾ (𝑦𝑁𝑥)) ∈ V
3935, 38fnmpoi 7997 . . . . . . 7 (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))) Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))
40 fucoppc.g . . . . . . . 8 (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
4140fneq1d 6569 . . . . . . 7 (𝜑 → (𝐺 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ↔ (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))) Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))))
4239, 41mpbiri 258 . . . . . 6 (𝜑𝐺 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)))
43 f1oi 6796 . . . . . . . 8 ( I ↾ (𝑔𝑁𝑓)):(𝑔𝑁𝑓)–1-1-onto→(𝑔𝑁𝑓)
4440adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
45 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝑓 ∈ (𝐶 Func 𝐷))
46 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝑔 ∈ (𝐶 Func 𝐷))
4744, 45, 46opf2fval 49437 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓𝐺𝑔) = ( I ↾ (𝑔𝑁𝑓)))
48 fucoppc.n . . . . . . . . . . . 12 𝑁 = (𝐶 Nat 𝐷)
492, 48fuchom 17866 . . . . . . . . . . 11 𝑁 = (Hom ‘𝑄)
5049, 1oppchom 17616 . . . . . . . . . 10 (𝑓(Hom ‘𝑅)𝑔) = (𝑔𝑁𝑓)
5150a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓(Hom ‘𝑅)𝑔) = (𝑔𝑁𝑓))
5230adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
5325, 26, 48, 52, 45, 46fucoppclem 49439 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑔𝑁𝑓) = ((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)))
5453eqcomd 2737 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → ((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)) = (𝑔𝑁𝑓))
5547, 51, 54f1oeq123d 6752 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → ((𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)) ↔ ( I ↾ (𝑔𝑁𝑓)):(𝑔𝑁𝑓)–1-1-onto→(𝑔𝑁𝑓)))
5643, 55mpbiri 258 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)))
57 f1of 6758 . . . . . . 7 ((𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)) → (𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)⟶((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)))
5856, 57syl 17 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)⟶((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)))
5930adantr 480 . . . . . . 7 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
6040adantr 480 . . . . . . 7 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
61 simpr 484 . . . . . . 7 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
6225, 26, 2, 1, 5, 48, 59, 60, 61fucoppcid 49440 . . . . . 6 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → ((𝑓𝐺𝑓)‘((Id‘𝑅)‘𝑓)) = ((Id‘𝑆)‘(𝐹𝑓)))
63303ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
64403ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
65 simp3l 1202 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔))
66 simp3r 1203 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))
6725, 26, 2, 1, 5, 48, 63, 64, 65, 66fucoppcco 49441 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → ((𝑓𝐺𝑘)‘(𝑏(⟨𝑓, 𝑔⟩(comp‘𝑅)𝑘)𝑎)) = (((𝑔𝐺𝑘)‘𝑏)(⟨(𝐹𝑓), (𝐹𝑔)⟩(comp‘𝑆)(𝐹𝑘))((𝑓𝐺𝑔)‘𝑎)))
684, 6, 7, 9, 10, 11, 12, 13, 21, 24, 34, 42, 58, 62, 67isfuncd 17767 . . . . 5 (𝜑𝐹(𝑅 Func 𝑆)𝐺)
6956ralrimivva 3175 . . . . 5 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)))
704, 7, 9isffth2 17820 . . . . 5 (𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺 ↔ (𝐹(𝑅 Func 𝑆)𝐺 ∧ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔))))
7168, 69, 70sylanbrc 583 . . . 4 (𝜑𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺)
72 df-br 5087 . . . 4 (𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆)))
7371, 72sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆)))
7468func1st 49109 . . . . 5 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
7574f1oeq1d 6753 . . . 4 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) ↔ 𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)))
7632, 75mpbird 257 . . 3 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))
77 fucoppc.i . . . 4 𝐼 = (Iso‘𝑇)
7815, 16, 4, 6, 18, 14, 22, 77catciso 18013 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ (𝑅𝐼𝑆) ↔ (⟨𝐹, 𝐺⟩ ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆)) ∧ (1st ‘⟨𝐹, 𝐺⟩):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))))
7973, 76, 78mpbir2and 713 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑅𝐼𝑆))
80 df-br 5087 . 2 (𝐹(𝑅𝐼𝑆)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑅𝐼𝑆))
8179, 80sylibr 234 1 (𝜑𝐹(𝑅𝐼𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3896  cop 4577   class class class wbr 5086   I cid 5505   × cxp 5609  cres 5613   Fn wfn 6471  wf 6472  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  Basecbs 17115  Hom chom 17167  compcco 17168  Catccat 17565  Idccid 17566  oppCatcoppc 17612  Isociso 17648   Func cfunc 17756   Full cful 17806   Faith cfth 17807   Nat cnat 17846   FuncCat cfuc 17847  CatCatccatc 18000   oppFunc coppf 49154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-hom 17180  df-cco 17181  df-cat 17569  df-cid 17570  df-homf 17571  df-comf 17572  df-oppc 17613  df-sect 17649  df-inv 17650  df-iso 17651  df-func 17760  df-idfu 17761  df-cofu 17762  df-full 17808  df-fth 17809  df-nat 17848  df-fuc 17849  df-catc 18001  df-oppf 49155
This theorem is referenced by:  fucoppcffth  49443  fucoppccic  49445
  Copyright terms: Public domain W3C validator