Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoppc Structured version   Visualization version   GIF version

Theorem fucoppc 49571
Description: The isomorphism from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
fucoppc.o 𝑂 = (oppCat‘𝐶)
fucoppc.p 𝑃 = (oppCat‘𝐷)
fucoppc.q 𝑄 = (𝐶 FuncCat 𝐷)
fucoppc.r 𝑅 = (oppCat‘𝑄)
fucoppc.s 𝑆 = (𝑂 FuncCat 𝑃)
fucoppc.n 𝑁 = (𝐶 Nat 𝐷)
fucoppc.f (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
fucoppc.g (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
fucoppc.t 𝑇 = (CatCat‘𝑈)
fucoppc.b 𝐵 = (Base‘𝑇)
fucoppc.i 𝐼 = (Iso‘𝑇)
fucoppc.c (𝜑𝐶𝑉)
fucoppc.d (𝜑𝐷𝑊)
fucoppc.1 (𝜑𝑅𝐵)
fucoppc.2 (𝜑𝑆𝐵)
Assertion
Ref Expression
fucoppc (𝜑𝐹(𝑅𝐼𝑆)𝐺)
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝑁,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐼(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem fucoppc
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucoppc.r . . . . . . 7 𝑅 = (oppCat‘𝑄)
2 fucoppc.q . . . . . . . 8 𝑄 = (𝐶 FuncCat 𝐷)
32fucbas 17878 . . . . . . 7 (𝐶 Func 𝐷) = (Base‘𝑄)
41, 3oppcbas 17632 . . . . . 6 (𝐶 Func 𝐷) = (Base‘𝑅)
5 fucoppc.s . . . . . . 7 𝑆 = (𝑂 FuncCat 𝑃)
65fucbas 17878 . . . . . 6 (𝑂 Func 𝑃) = (Base‘𝑆)
7 eqid 2733 . . . . . 6 (Hom ‘𝑅) = (Hom ‘𝑅)
8 eqid 2733 . . . . . . 7 (𝑂 Nat 𝑃) = (𝑂 Nat 𝑃)
95, 8fuchom 17879 . . . . . 6 (𝑂 Nat 𝑃) = (Hom ‘𝑆)
10 eqid 2733 . . . . . 6 (Id‘𝑅) = (Id‘𝑅)
11 eqid 2733 . . . . . 6 (Id‘𝑆) = (Id‘𝑆)
12 eqid 2733 . . . . . 6 (comp‘𝑅) = (comp‘𝑅)
13 eqid 2733 . . . . . 6 (comp‘𝑆) = (comp‘𝑆)
14 fucoppc.1 . . . . . . . 8 (𝜑𝑅𝐵)
15 fucoppc.t . . . . . . . . 9 𝑇 = (CatCat‘𝑈)
16 fucoppc.b . . . . . . . . 9 𝐵 = (Base‘𝑇)
1715, 16elbasfv 17133 . . . . . . . . . 10 (𝑅𝐵𝑈 ∈ V)
1814, 17syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ V)
1915, 16, 18catcbas 18016 . . . . . . . 8 (𝜑𝐵 = (𝑈 ∩ Cat))
2014, 19eleqtrd 2835 . . . . . . 7 (𝜑𝑅 ∈ (𝑈 ∩ Cat))
2120elin2d 4154 . . . . . 6 (𝜑𝑅 ∈ Cat)
22 fucoppc.2 . . . . . . . 8 (𝜑𝑆𝐵)
2322, 19eleqtrd 2835 . . . . . . 7 (𝜑𝑆 ∈ (𝑈 ∩ Cat))
2423elin2d 4154 . . . . . 6 (𝜑𝑆 ∈ Cat)
25 fucoppc.o . . . . . . . . 9 𝑂 = (oppCat‘𝐶)
26 fucoppc.p . . . . . . . . 9 𝑃 = (oppCat‘𝐷)
27 fucoppc.c . . . . . . . . 9 (𝜑𝐶𝑉)
28 fucoppc.d . . . . . . . . 9 (𝜑𝐷𝑊)
2925, 26, 27, 28oppff1o 49310 . . . . . . . 8 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))
30 fucoppc.f . . . . . . . . 9 (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
3130f1oeq1d 6766 . . . . . . . 8 (𝜑 → (𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) ↔ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)))
3229, 31mpbird 257 . . . . . . 7 (𝜑𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))
33 f1of 6771 . . . . . . 7 (𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) → 𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))
3432, 33syl 17 . . . . . 6 (𝜑𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))
35 eqid 2733 . . . . . . . 8 (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))) = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))
36 ovex 7388 . . . . . . . . 9 (𝑦𝑁𝑥) ∈ V
37 resiexg 7851 . . . . . . . . 9 ((𝑦𝑁𝑥) ∈ V → ( I ↾ (𝑦𝑁𝑥)) ∈ V)
3836, 37ax-mp 5 . . . . . . . 8 ( I ↾ (𝑦𝑁𝑥)) ∈ V
3935, 38fnmpoi 8011 . . . . . . 7 (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))) Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))
40 fucoppc.g . . . . . . . 8 (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
4140fneq1d 6582 . . . . . . 7 (𝜑 → (𝐺 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ↔ (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))) Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))))
4239, 41mpbiri 258 . . . . . 6 (𝜑𝐺 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)))
43 f1oi 6809 . . . . . . . 8 ( I ↾ (𝑔𝑁𝑓)):(𝑔𝑁𝑓)–1-1-onto→(𝑔𝑁𝑓)
4440adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
45 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝑓 ∈ (𝐶 Func 𝐷))
46 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝑔 ∈ (𝐶 Func 𝐷))
4744, 45, 46opf2fval 49566 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓𝐺𝑔) = ( I ↾ (𝑔𝑁𝑓)))
48 fucoppc.n . . . . . . . . . . . 12 𝑁 = (𝐶 Nat 𝐷)
492, 48fuchom 17879 . . . . . . . . . . 11 𝑁 = (Hom ‘𝑄)
5049, 1oppchom 17629 . . . . . . . . . 10 (𝑓(Hom ‘𝑅)𝑔) = (𝑔𝑁𝑓)
5150a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓(Hom ‘𝑅)𝑔) = (𝑔𝑁𝑓))
5230adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
5325, 26, 48, 52, 45, 46fucoppclem 49568 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑔𝑁𝑓) = ((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)))
5453eqcomd 2739 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → ((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)) = (𝑔𝑁𝑓))
5547, 51, 54f1oeq123d 6765 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → ((𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)) ↔ ( I ↾ (𝑔𝑁𝑓)):(𝑔𝑁𝑓)–1-1-onto→(𝑔𝑁𝑓)))
5643, 55mpbiri 258 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)))
57 f1of 6771 . . . . . . 7 ((𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)) → (𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)⟶((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)))
5856, 57syl 17 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)⟶((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)))
5930adantr 480 . . . . . . 7 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
6040adantr 480 . . . . . . 7 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
61 simpr 484 . . . . . . 7 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
6225, 26, 2, 1, 5, 48, 59, 60, 61fucoppcid 49569 . . . . . 6 ((𝜑𝑓 ∈ (𝐶 Func 𝐷)) → ((𝑓𝐺𝑓)‘((Id‘𝑅)‘𝑓)) = ((Id‘𝑆)‘(𝐹𝑓)))
63303ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
64403ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))
65 simp3l 1202 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔))
66 simp3r 1203 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))
6725, 26, 2, 1, 5, 48, 63, 64, 65, 66fucoppcco 49570 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → ((𝑓𝐺𝑘)‘(𝑏(⟨𝑓, 𝑔⟩(comp‘𝑅)𝑘)𝑎)) = (((𝑔𝐺𝑘)‘𝑏)(⟨(𝐹𝑓), (𝐹𝑔)⟩(comp‘𝑆)(𝐹𝑘))((𝑓𝐺𝑔)‘𝑎)))
684, 6, 7, 9, 10, 11, 12, 13, 21, 24, 34, 42, 58, 62, 67isfuncd 17780 . . . . 5 (𝜑𝐹(𝑅 Func 𝑆)𝐺)
6956ralrimivva 3176 . . . . 5 (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔)))
704, 7, 9isffth2 17833 . . . . 5 (𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺 ↔ (𝐹(𝑅 Func 𝑆)𝐺 ∧ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹𝑓)(𝑂 Nat 𝑃)(𝐹𝑔))))
7168, 69, 70sylanbrc 583 . . . 4 (𝜑𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺)
72 df-br 5096 . . . 4 (𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆)))
7371, 72sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆)))
7468func1st 49238 . . . . 5 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
7574f1oeq1d 6766 . . . 4 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) ↔ 𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)))
7632, 75mpbird 257 . . 3 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))
77 fucoppc.i . . . 4 𝐼 = (Iso‘𝑇)
7815, 16, 4, 6, 18, 14, 22, 77catciso 18026 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ (𝑅𝐼𝑆) ↔ (⟨𝐹, 𝐺⟩ ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆)) ∧ (1st ‘⟨𝐹, 𝐺⟩):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))))
7973, 76, 78mpbir2and 713 . 2 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝑅𝐼𝑆))
80 df-br 5096 . 2 (𝐹(𝑅𝐼𝑆)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑅𝐼𝑆))
8179, 80sylibr 234 1 (𝜑𝐹(𝑅𝐼𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cin 3897  cop 4583   class class class wbr 5095   I cid 5515   × cxp 5619  cres 5623   Fn wfn 6484  wf 6485  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  cmpo 7357  1st c1st 7928  Basecbs 17127  Hom chom 17179  compcco 17180  Catccat 17578  Idccid 17579  oppCatcoppc 17625  Isociso 17661   Func cfunc 17769   Full cful 17819   Faith cfth 17820   Nat cnat 17859   FuncCat cfuc 17860  CatCatccatc 18013   oppFunc coppf 49283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-cat 17582  df-cid 17583  df-homf 17584  df-comf 17585  df-oppc 17626  df-sect 17662  df-inv 17663  df-iso 17664  df-func 17773  df-idfu 17774  df-cofu 17775  df-full 17821  df-fth 17822  df-nat 17861  df-fuc 17862  df-catc 18014  df-oppf 49284
This theorem is referenced by:  fucoppcffth  49572  fucoppccic  49574
  Copyright terms: Public domain W3C validator