| Step | Hyp | Ref
| Expression |
| 1 | | fucoppc.r |
. . . . . . 7
⊢ 𝑅 = (oppCat‘𝑄) |
| 2 | | fucoppc.q |
. . . . . . . 8
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| 3 | 2 | fucbas 17931 |
. . . . . . 7
⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
| 4 | 1, 3 | oppcbas 17685 |
. . . . . 6
⊢ (𝐶 Func 𝐷) = (Base‘𝑅) |
| 5 | | fucoppc.s |
. . . . . . 7
⊢ 𝑆 = (𝑂 FuncCat 𝑃) |
| 6 | 5 | fucbas 17931 |
. . . . . 6
⊢ (𝑂 Func 𝑃) = (Base‘𝑆) |
| 7 | | eqid 2730 |
. . . . . 6
⊢ (Hom
‘𝑅) = (Hom
‘𝑅) |
| 8 | | eqid 2730 |
. . . . . . 7
⊢ (𝑂 Nat 𝑃) = (𝑂 Nat 𝑃) |
| 9 | 5, 8 | fuchom 17932 |
. . . . . 6
⊢ (𝑂 Nat 𝑃) = (Hom ‘𝑆) |
| 10 | | eqid 2730 |
. . . . . 6
⊢
(Id‘𝑅) =
(Id‘𝑅) |
| 11 | | eqid 2730 |
. . . . . 6
⊢
(Id‘𝑆) =
(Id‘𝑆) |
| 12 | | eqid 2730 |
. . . . . 6
⊢
(comp‘𝑅) =
(comp‘𝑅) |
| 13 | | eqid 2730 |
. . . . . 6
⊢
(comp‘𝑆) =
(comp‘𝑆) |
| 14 | | fucoppc.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ 𝐵) |
| 15 | | fucoppc.t |
. . . . . . . . 9
⊢ 𝑇 = (CatCat‘𝑈) |
| 16 | | fucoppc.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑇) |
| 17 | 15, 16 | elbasfv 17191 |
. . . . . . . . . 10
⊢ (𝑅 ∈ 𝐵 → 𝑈 ∈ V) |
| 18 | 14, 17 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ V) |
| 19 | 15, 16, 18 | catcbas 18069 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) |
| 20 | 14, 19 | eleqtrd 2831 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ (𝑈 ∩ Cat)) |
| 21 | 20 | elin2d 4170 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Cat) |
| 22 | | fucoppc.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝐵) |
| 23 | 22, 19 | eleqtrd 2831 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ (𝑈 ∩ Cat)) |
| 24 | 23 | elin2d 4170 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Cat) |
| 25 | | fucoppc.o |
. . . . . . . . 9
⊢ 𝑂 = (oppCat‘𝐶) |
| 26 | | fucoppc.p |
. . . . . . . . 9
⊢ 𝑃 = (oppCat‘𝐷) |
| 27 | | fucoppc.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 28 | | fucoppc.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| 29 | 25, 26, 27, 28 | oppff1o 49126 |
. . . . . . . 8
⊢ (𝜑 → (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)) |
| 30 | | fucoppc.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 = (oppFunc ↾ (𝐶 Func 𝐷))) |
| 31 | 30 | f1oeq1d 6797 |
. . . . . . . 8
⊢ (𝜑 → (𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) ↔ (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))) |
| 32 | 29, 31 | mpbird 257 |
. . . . . . 7
⊢ (𝜑 → 𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)) |
| 33 | | f1of 6802 |
. . . . . . 7
⊢ (𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) → 𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) |
| 34 | 32, 33 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) |
| 35 | | eqid 2730 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))) = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))) |
| 36 | | ovex 7422 |
. . . . . . . . 9
⊢ (𝑦𝑁𝑥) ∈ V |
| 37 | | resiexg 7890 |
. . . . . . . . 9
⊢ ((𝑦𝑁𝑥) ∈ V → ( I ↾ (𝑦𝑁𝑥)) ∈ V) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . 8
⊢ ( I
↾ (𝑦𝑁𝑥)) ∈ V |
| 39 | 35, 38 | fnmpoi 8051 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))) Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) |
| 40 | | fucoppc.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| 41 | 40 | fneq1d 6613 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)) ↔ (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))) Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷)))) |
| 42 | 39, 41 | mpbiri 258 |
. . . . . 6
⊢ (𝜑 → 𝐺 Fn ((𝐶 Func 𝐷) × (𝐶 Func 𝐷))) |
| 43 | | f1oi 6840 |
. . . . . . . 8
⊢ ( I
↾ (𝑔𝑁𝑓)):(𝑔𝑁𝑓)–1-1-onto→(𝑔𝑁𝑓) |
| 44 | 40 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| 45 | | simprl 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝑓 ∈ (𝐶 Func 𝐷)) |
| 46 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝑔 ∈ (𝐶 Func 𝐷)) |
| 47 | 44, 45, 46 | opf2fval 49374 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓𝐺𝑔) = ( I ↾ (𝑔𝑁𝑓))) |
| 48 | | fucoppc.n |
. . . . . . . . . . . 12
⊢ 𝑁 = (𝐶 Nat 𝐷) |
| 49 | 2, 48 | fuchom 17932 |
. . . . . . . . . . 11
⊢ 𝑁 = (Hom ‘𝑄) |
| 50 | 49, 1 | oppchom 17682 |
. . . . . . . . . 10
⊢ (𝑓(Hom ‘𝑅)𝑔) = (𝑔𝑁𝑓) |
| 51 | 50 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓(Hom ‘𝑅)𝑔) = (𝑔𝑁𝑓)) |
| 52 | 30 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → 𝐹 = (oppFunc ↾ (𝐶 Func 𝐷))) |
| 53 | 25, 26, 48, 52, 45, 46 | fucoppclem 49376 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑔𝑁𝑓) = ((𝐹‘𝑓)(𝑂 Nat 𝑃)(𝐹‘𝑔))) |
| 54 | 53 | eqcomd 2736 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → ((𝐹‘𝑓)(𝑂 Nat 𝑃)(𝐹‘𝑔)) = (𝑔𝑁𝑓)) |
| 55 | 47, 51, 54 | f1oeq123d 6796 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → ((𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹‘𝑓)(𝑂 Nat 𝑃)(𝐹‘𝑔)) ↔ ( I ↾ (𝑔𝑁𝑓)):(𝑔𝑁𝑓)–1-1-onto→(𝑔𝑁𝑓))) |
| 56 | 43, 55 | mpbiri 258 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹‘𝑓)(𝑂 Nat 𝑃)(𝐹‘𝑔))) |
| 57 | | f1of 6802 |
. . . . . . 7
⊢ ((𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹‘𝑓)(𝑂 Nat 𝑃)(𝐹‘𝑔)) → (𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)⟶((𝐹‘𝑓)(𝑂 Nat 𝑃)(𝐹‘𝑔))) |
| 58 | 56, 57 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷))) → (𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)⟶((𝐹‘𝑓)(𝑂 Nat 𝑃)(𝐹‘𝑔))) |
| 59 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → 𝐹 = (oppFunc ↾ (𝐶 Func 𝐷))) |
| 60 | 40 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| 61 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷)) |
| 62 | 25, 26, 2, 1, 5, 48,
59, 60, 61 | fucoppcid 49377 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → ((𝑓𝐺𝑓)‘((Id‘𝑅)‘𝑓)) = ((Id‘𝑆)‘(𝐹‘𝑓))) |
| 63 | 30 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝐹 = (oppFunc ↾ (𝐶 Func 𝐷))) |
| 64 | 40 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) |
| 65 | | simp3l 1202 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔)) |
| 66 | | simp3r 1203 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘)) |
| 67 | 25, 26, 2, 1, 5, 48,
63, 64, 65, 66 | fucoppcco 49378 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐶 Func 𝐷) ∧ 𝑔 ∈ (𝐶 Func 𝐷) ∧ 𝑘 ∈ (𝐶 Func 𝐷)) ∧ (𝑎 ∈ (𝑓(Hom ‘𝑅)𝑔) ∧ 𝑏 ∈ (𝑔(Hom ‘𝑅)𝑘))) → ((𝑓𝐺𝑘)‘(𝑏(〈𝑓, 𝑔〉(comp‘𝑅)𝑘)𝑎)) = (((𝑔𝐺𝑘)‘𝑏)(〈(𝐹‘𝑓), (𝐹‘𝑔)〉(comp‘𝑆)(𝐹‘𝑘))((𝑓𝐺𝑔)‘𝑎))) |
| 68 | 4, 6, 7, 9, 10, 11, 12, 13, 21, 24, 34, 42, 58, 62, 67 | isfuncd 17833 |
. . . . 5
⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) |
| 69 | 56 | ralrimivva 3181 |
. . . . 5
⊢ (𝜑 → ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹‘𝑓)(𝑂 Nat 𝑃)(𝐹‘𝑔))) |
| 70 | 4, 7, 9 | isffth2 17886 |
. . . . 5
⊢ (𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺 ↔ (𝐹(𝑅 Func 𝑆)𝐺 ∧ ∀𝑓 ∈ (𝐶 Func 𝐷)∀𝑔 ∈ (𝐶 Func 𝐷)(𝑓𝐺𝑔):(𝑓(Hom ‘𝑅)𝑔)–1-1-onto→((𝐹‘𝑓)(𝑂 Nat 𝑃)(𝐹‘𝑔)))) |
| 71 | 68, 69, 70 | sylanbrc 583 |
. . . 4
⊢ (𝜑 → 𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺) |
| 72 | | df-br 5110 |
. . . 4
⊢ (𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺 ↔ 〈𝐹, 𝐺〉 ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))) |
| 73 | 71, 72 | sylib 218 |
. . 3
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))) |
| 74 | 68 | func1st 49054 |
. . . . 5
⊢ (𝜑 → (1st
‘〈𝐹, 𝐺〉) = 𝐹) |
| 75 | 74 | f1oeq1d 6797 |
. . . 4
⊢ (𝜑 → ((1st
‘〈𝐹, 𝐺〉):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) ↔ 𝐹:(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))) |
| 76 | 32, 75 | mpbird 257 |
. . 3
⊢ (𝜑 → (1st
‘〈𝐹, 𝐺〉):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)) |
| 77 | | fucoppc.i |
. . . 4
⊢ 𝐼 = (Iso‘𝑇) |
| 78 | 15, 16, 4, 6, 18, 14, 22, 77 | catciso 18079 |
. . 3
⊢ (𝜑 → (〈𝐹, 𝐺〉 ∈ (𝑅𝐼𝑆) ↔ (〈𝐹, 𝐺〉 ∈ ((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆)) ∧ (1st ‘〈𝐹, 𝐺〉):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)))) |
| 79 | 73, 76, 78 | mpbir2and 713 |
. 2
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝑅𝐼𝑆)) |
| 80 | | df-br 5110 |
. 2
⊢ (𝐹(𝑅𝐼𝑆)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑅𝐼𝑆)) |
| 81 | 79, 80 | sylibr 234 |
1
⊢ (𝜑 → 𝐹(𝑅𝐼𝑆)𝐺) |