Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opf12 Structured version   Visualization version   GIF version

Theorem opf12 49565
Description: The object part of the op functor on functor categories. Lemma for oppfdiag 49577. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
opf11.f (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
opf11.x (𝜑𝑋 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
opf12 (𝜑 → (𝑀(2nd ‘(𝐹𝑋))𝑁) = (𝑁(2nd𝑋)𝑀))

Proof of Theorem opf12
StepHypRef Expression
1 opf11.f . . . . . 6 (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
21fveq1d 6833 . . . . 5 (𝜑 → (𝐹𝑋) = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑋))
3 opf11.x . . . . . 6 (𝜑𝑋 ∈ (𝐶 Func 𝐷))
43fvresd 6851 . . . . 5 (𝜑 → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑋) = ( oppFunc ‘𝑋))
5 oppfval2 49298 . . . . . 6 (𝑋 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝑋) = ⟨(1st𝑋), tpos (2nd𝑋)⟩)
63, 5syl 17 . . . . 5 (𝜑 → ( oppFunc ‘𝑋) = ⟨(1st𝑋), tpos (2nd𝑋)⟩)
72, 4, 63eqtrd 2772 . . . 4 (𝜑 → (𝐹𝑋) = ⟨(1st𝑋), tpos (2nd𝑋)⟩)
8 fvex 6844 . . . . 5 (1st𝑋) ∈ V
9 fvex 6844 . . . . . 6 (2nd𝑋) ∈ V
109tposex 8199 . . . . 5 tpos (2nd𝑋) ∈ V
118, 10op2ndd 7941 . . . 4 ((𝐹𝑋) = ⟨(1st𝑋), tpos (2nd𝑋)⟩ → (2nd ‘(𝐹𝑋)) = tpos (2nd𝑋))
127, 11syl 17 . . 3 (𝜑 → (2nd ‘(𝐹𝑋)) = tpos (2nd𝑋))
1312oveqd 7372 . 2 (𝜑 → (𝑀(2nd ‘(𝐹𝑋))𝑁) = (𝑀tpos (2nd𝑋)𝑁))
14 ovtpos 8180 . 2 (𝑀tpos (2nd𝑋)𝑁) = (𝑁(2nd𝑋)𝑀)
1513, 14eqtrdi 2784 1 (𝜑 → (𝑀(2nd ‘(𝐹𝑋))𝑁) = (𝑁(2nd𝑋)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cop 4583  cres 5623  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  tpos ctpos 8164   Func cfunc 17769   oppFunc coppf 49283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-tpos 8165  df-map 8761  df-ixp 8832  df-func 17773  df-oppf 49284
This theorem is referenced by:  oppfdiag1  49575
  Copyright terms: Public domain W3C validator