Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opf12 Structured version   Visualization version   GIF version

Theorem opf12 49366
Description: The object part of the op functor on functor categories. Lemma for oppfdiag 49378. (Contributed by Zhi Wang, 19-Nov-2025.)
Hypotheses
Ref Expression
opf11.f (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
opf11.x (𝜑𝑋 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
opf12 (𝜑 → (𝑀(2nd ‘(𝐹𝑋))𝑁) = (𝑁(2nd𝑋)𝑀))

Proof of Theorem opf12
StepHypRef Expression
1 opf11.f . . . . . 6 (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))
21fveq1d 6842 . . . . 5 (𝜑 → (𝐹𝑋) = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑋))
3 opf11.x . . . . . 6 (𝜑𝑋 ∈ (𝐶 Func 𝐷))
43fvresd 6860 . . . . 5 (𝜑 → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑋) = ( oppFunc ‘𝑋))
5 oppfval2 49099 . . . . . 6 (𝑋 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝑋) = ⟨(1st𝑋), tpos (2nd𝑋)⟩)
63, 5syl 17 . . . . 5 (𝜑 → ( oppFunc ‘𝑋) = ⟨(1st𝑋), tpos (2nd𝑋)⟩)
72, 4, 63eqtrd 2768 . . . 4 (𝜑 → (𝐹𝑋) = ⟨(1st𝑋), tpos (2nd𝑋)⟩)
8 fvex 6853 . . . . 5 (1st𝑋) ∈ V
9 fvex 6853 . . . . . 6 (2nd𝑋) ∈ V
109tposex 8216 . . . . 5 tpos (2nd𝑋) ∈ V
118, 10op2ndd 7958 . . . 4 ((𝐹𝑋) = ⟨(1st𝑋), tpos (2nd𝑋)⟩ → (2nd ‘(𝐹𝑋)) = tpos (2nd𝑋))
127, 11syl 17 . . 3 (𝜑 → (2nd ‘(𝐹𝑋)) = tpos (2nd𝑋))
1312oveqd 7386 . 2 (𝜑 → (𝑀(2nd ‘(𝐹𝑋))𝑁) = (𝑀tpos (2nd𝑋)𝑁))
14 ovtpos 8197 . 2 (𝑀tpos (2nd𝑋)𝑁) = (𝑁(2nd𝑋)𝑀)
1513, 14eqtrdi 2780 1 (𝜑 → (𝑀(2nd ‘(𝐹𝑋))𝑁) = (𝑁(2nd𝑋)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4591  cres 5633  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  tpos ctpos 8181   Func cfunc 17792   oppFunc coppf 49084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-tpos 8182  df-map 8778  df-ixp 8848  df-func 17796  df-oppf 49085
This theorem is referenced by:  oppfdiag1  49376
  Copyright terms: Public domain W3C validator