| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opf12 | Structured version Visualization version GIF version | ||
| Description: The object part of the op functor on functor categories. Lemma for oppfdiag 49378. (Contributed by Zhi Wang, 19-Nov-2025.) |
| Ref | Expression |
|---|---|
| opf11.f | ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) |
| opf11.x | ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| opf12 | ⊢ (𝜑 → (𝑀(2nd ‘(𝐹‘𝑋))𝑁) = (𝑁(2nd ‘𝑋)𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opf11.f | . . . . . 6 ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) | |
| 2 | 1 | fveq1d 6842 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑋) = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑋)) |
| 3 | opf11.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) | |
| 4 | 3 | fvresd 6860 | . . . . 5 ⊢ (𝜑 → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑋) = ( oppFunc ‘𝑋)) |
| 5 | oppfval2 49099 | . . . . . 6 ⊢ (𝑋 ∈ (𝐶 Func 𝐷) → ( oppFunc ‘𝑋) = 〈(1st ‘𝑋), tpos (2nd ‘𝑋)〉) | |
| 6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → ( oppFunc ‘𝑋) = 〈(1st ‘𝑋), tpos (2nd ‘𝑋)〉) |
| 7 | 2, 4, 6 | 3eqtrd 2768 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) = 〈(1st ‘𝑋), tpos (2nd ‘𝑋)〉) |
| 8 | fvex 6853 | . . . . 5 ⊢ (1st ‘𝑋) ∈ V | |
| 9 | fvex 6853 | . . . . . 6 ⊢ (2nd ‘𝑋) ∈ V | |
| 10 | 9 | tposex 8216 | . . . . 5 ⊢ tpos (2nd ‘𝑋) ∈ V |
| 11 | 8, 10 | op2ndd 7958 | . . . 4 ⊢ ((𝐹‘𝑋) = 〈(1st ‘𝑋), tpos (2nd ‘𝑋)〉 → (2nd ‘(𝐹‘𝑋)) = tpos (2nd ‘𝑋)) |
| 12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐹‘𝑋)) = tpos (2nd ‘𝑋)) |
| 13 | 12 | oveqd 7386 | . 2 ⊢ (𝜑 → (𝑀(2nd ‘(𝐹‘𝑋))𝑁) = (𝑀tpos (2nd ‘𝑋)𝑁)) |
| 14 | ovtpos 8197 | . 2 ⊢ (𝑀tpos (2nd ‘𝑋)𝑁) = (𝑁(2nd ‘𝑋)𝑀) | |
| 15 | 13, 14 | eqtrdi 2780 | 1 ⊢ (𝜑 → (𝑀(2nd ‘(𝐹‘𝑋))𝑁) = (𝑁(2nd ‘𝑋)𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4591 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 tpos ctpos 8181 Func cfunc 17792 oppFunc coppf 49084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-tpos 8182 df-map 8778 df-ixp 8848 df-func 17796 df-oppf 49085 |
| This theorem is referenced by: oppfdiag1 49376 |
| Copyright terms: Public domain | W3C validator |