| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opf12 | Structured version Visualization version GIF version | ||
| Description: The object part of the op functor on functor categories. Lemma for oppfdiag 49385. (Contributed by Zhi Wang, 19-Nov-2025.) |
| Ref | Expression |
|---|---|
| opf11.f | ⊢ (𝜑 → 𝐹 = (oppFunc ↾ (𝐶 Func 𝐷))) |
| opf11.x | ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| opf12 | ⊢ (𝜑 → (𝑀(2nd ‘(𝐹‘𝑋))𝑁) = (𝑁(2nd ‘𝑋)𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opf11.f | . . . . . 6 ⊢ (𝜑 → 𝐹 = (oppFunc ↾ (𝐶 Func 𝐷))) | |
| 2 | 1 | fveq1d 6862 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑋) = ((oppFunc ↾ (𝐶 Func 𝐷))‘𝑋)) |
| 3 | opf11.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) | |
| 4 | 3 | fvresd 6880 | . . . . 5 ⊢ (𝜑 → ((oppFunc ↾ (𝐶 Func 𝐷))‘𝑋) = (oppFunc‘𝑋)) |
| 5 | oppfval2 49114 | . . . . . 6 ⊢ (𝑋 ∈ (𝐶 Func 𝐷) → (oppFunc‘𝑋) = 〈(1st ‘𝑋), tpos (2nd ‘𝑋)〉) | |
| 6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (oppFunc‘𝑋) = 〈(1st ‘𝑋), tpos (2nd ‘𝑋)〉) |
| 7 | 2, 4, 6 | 3eqtrd 2769 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) = 〈(1st ‘𝑋), tpos (2nd ‘𝑋)〉) |
| 8 | fvex 6873 | . . . . 5 ⊢ (1st ‘𝑋) ∈ V | |
| 9 | fvex 6873 | . . . . . 6 ⊢ (2nd ‘𝑋) ∈ V | |
| 10 | 9 | tposex 8241 | . . . . 5 ⊢ tpos (2nd ‘𝑋) ∈ V |
| 11 | 8, 10 | op2ndd 7981 | . . . 4 ⊢ ((𝐹‘𝑋) = 〈(1st ‘𝑋), tpos (2nd ‘𝑋)〉 → (2nd ‘(𝐹‘𝑋)) = tpos (2nd ‘𝑋)) |
| 12 | 7, 11 | syl 17 | . . 3 ⊢ (𝜑 → (2nd ‘(𝐹‘𝑋)) = tpos (2nd ‘𝑋)) |
| 13 | 12 | oveqd 7406 | . 2 ⊢ (𝜑 → (𝑀(2nd ‘(𝐹‘𝑋))𝑁) = (𝑀tpos (2nd ‘𝑋)𝑁)) |
| 14 | ovtpos 8222 | . 2 ⊢ (𝑀tpos (2nd ‘𝑋)𝑁) = (𝑁(2nd ‘𝑋)𝑀) | |
| 15 | 13, 14 | eqtrdi 2781 | 1 ⊢ (𝜑 → (𝑀(2nd ‘(𝐹‘𝑋))𝑁) = (𝑁(2nd ‘𝑋)𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4597 ↾ cres 5642 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 tpos ctpos 8206 Func cfunc 17822 oppFunccoppf 49099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-tpos 8207 df-map 8803 df-ixp 8873 df-func 17826 df-oppf 49100 |
| This theorem is referenced by: oppfdiag1 49383 |
| Copyright terms: Public domain | W3C validator |