Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltcon1b Structured version   Visualization version   GIF version

Theorem opltcon1b 35281
Description: Contraposition law for strict ordering in orthoposets. (chpsscon1 28919 analog.) (Contributed by NM, 5-Nov-2011.)
Hypotheses
Ref Expression
opltcon3.b 𝐵 = (Base‘𝐾)
opltcon3.s < = (lt‘𝐾)
opltcon3.o = (oc‘𝐾)
Assertion
Ref Expression
opltcon1b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) < 𝑌 ↔ ( 𝑌) < 𝑋))

Proof of Theorem opltcon1b
StepHypRef Expression
1 opltcon3.b . . . . 5 𝐵 = (Base‘𝐾)
2 opltcon3.o . . . . 5 = (oc‘𝐾)
31, 2opoccl 35270 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
433adant3 1168 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
5 opltcon3.s . . . 4 < = (lt‘𝐾)
61, 5, 2opltcon3b 35280 . . 3 ((𝐾 ∈ OP ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) < 𝑌 ↔ ( 𝑌) < ( ‘( 𝑋))))
74, 6syld3an2 1537 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) < 𝑌 ↔ ( 𝑌) < ( ‘( 𝑋))))
81, 2opococ 35271 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
983adant3 1168 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑋)) = 𝑋)
109breq2d 4886 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) < ( ‘( 𝑋)) ↔ ( 𝑌) < 𝑋))
117, 10bitrd 271 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) < 𝑌 ↔ ( 𝑌) < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1113   = wceq 1658  wcel 2166   class class class wbr 4874  cfv 6124  Basecbs 16223  occoc 16314  ltcplt 17295  OPcops 35248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pr 5128
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-iota 6087  df-fun 6126  df-fv 6132  df-ov 6909  df-proset 17282  df-poset 17300  df-plt 17312  df-oposet 35252
This theorem is referenced by:  cvrcon3b  35353
  Copyright terms: Public domain W3C validator