Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltcon1b Structured version   Visualization version   GIF version

Theorem opltcon1b 38733
Description: Contraposition law for strict ordering in orthoposets. (chpsscon1 31358 analog.) (Contributed by NM, 5-Nov-2011.)
Hypotheses
Ref Expression
opltcon3.b 𝐵 = (Base‘𝐾)
opltcon3.s < = (lt‘𝐾)
opltcon3.o = (oc‘𝐾)
Assertion
Ref Expression
opltcon1b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) < 𝑌 ↔ ( 𝑌) < 𝑋))

Proof of Theorem opltcon1b
StepHypRef Expression
1 opltcon3.b . . . . 5 𝐵 = (Base‘𝐾)
2 opltcon3.o . . . . 5 = (oc‘𝐾)
31, 2opoccl 38722 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
433adant3 1129 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
5 opltcon3.s . . . 4 < = (lt‘𝐾)
61, 5, 2opltcon3b 38732 . . 3 ((𝐾 ∈ OP ∧ ( 𝑋) ∈ 𝐵𝑌𝐵) → (( 𝑋) < 𝑌 ↔ ( 𝑌) < ( ‘( 𝑋))))
74, 6syld3an2 1408 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) < 𝑌 ↔ ( 𝑌) < ( ‘( 𝑋))))
81, 2opococ 38723 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( ‘( 𝑋)) = 𝑋)
983adant3 1129 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( ‘( 𝑋)) = 𝑋)
109breq2d 5155 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌) < ( ‘( 𝑋)) ↔ ( 𝑌) < 𝑋))
117, 10bitrd 278 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑋) < 𝑌 ↔ ( 𝑌) < 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5143  cfv 6543  Basecbs 17179  occoc 17240  ltcplt 18299  OPcops 38700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7419  df-proset 18286  df-poset 18304  df-plt 18321  df-oposet 38704
This theorem is referenced by:  cvrcon3b  38805
  Copyright terms: Public domain W3C validator