Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opltcon1b | Structured version Visualization version GIF version |
Description: Contraposition law for strict ordering in orthoposets. (chpsscon1 29767 analog.) (Contributed by NM, 5-Nov-2011.) |
Ref | Expression |
---|---|
opltcon3.b | ⊢ 𝐵 = (Base‘𝐾) |
opltcon3.s | ⊢ < = (lt‘𝐾) |
opltcon3.o | ⊢ ⊥ = (oc‘𝐾) |
Ref | Expression |
---|---|
opltcon1b | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) < 𝑌 ↔ ( ⊥ ‘𝑌) < 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opltcon3.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | opltcon3.o | . . . . 5 ⊢ ⊥ = (oc‘𝐾) | |
3 | 1, 2 | opoccl 37135 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
4 | 3 | 3adant3 1130 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘𝑋) ∈ 𝐵) |
5 | opltcon3.s | . . . 4 ⊢ < = (lt‘𝐾) | |
6 | 1, 5, 2 | opltcon3b 37145 | . . 3 ⊢ ((𝐾 ∈ OP ∧ ( ⊥ ‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘( ⊥ ‘𝑋)))) |
7 | 4, 6 | syld3an2 1409 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) < 𝑌 ↔ ( ⊥ ‘𝑌) < ( ⊥ ‘( ⊥ ‘𝑋)))) |
8 | 1, 2 | opococ 37136 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
9 | 8 | 3adant3 1130 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
10 | 9 | breq2d 5082 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑌) < ( ⊥ ‘( ⊥ ‘𝑋)) ↔ ( ⊥ ‘𝑌) < 𝑋)) |
11 | 7, 10 | bitrd 278 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (( ⊥ ‘𝑋) < 𝑌 ↔ ( ⊥ ‘𝑌) < 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 occoc 16896 ltcplt 17941 OPcops 37113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-proset 17928 df-poset 17946 df-plt 17963 df-oposet 37117 |
This theorem is referenced by: cvrcon3b 37218 |
Copyright terms: Public domain | W3C validator |