Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrcon3b Structured version   Visualization version   GIF version

Theorem cvrcon3b 38879
Description: Contraposition law for the covers relation. (cvcon3 32166 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
cvrcon3b.b 𝐵 = (Base‘𝐾)
cvrcon3b.o = (oc‘𝐾)
cvrcon3b.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrcon3b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑌)𝐶( 𝑋)))

Proof of Theorem cvrcon3b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvrcon3b.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2725 . . . 4 (lt‘𝐾) = (lt‘𝐾)
3 cvrcon3b.o . . . 4 = (oc‘𝐾)
41, 2, 3opltcon3b 38806 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋(lt‘𝐾)𝑌 ↔ ( 𝑌)(lt‘𝐾)( 𝑋)))
5 simpl1 1188 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝐾 ∈ OP)
6 simpl2 1189 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝑋𝐵)
7 simpr 483 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
81, 2, 3opltcon3b 38806 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑥𝐵) → (𝑋(lt‘𝐾)𝑥 ↔ ( 𝑥)(lt‘𝐾)( 𝑋)))
95, 6, 7, 8syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → (𝑋(lt‘𝐾)𝑥 ↔ ( 𝑥)(lt‘𝐾)( 𝑋)))
10 simpl3 1190 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝑌𝐵)
111, 2, 3opltcon3b 38806 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑥𝐵𝑌𝐵) → (𝑥(lt‘𝐾)𝑌 ↔ ( 𝑌)(lt‘𝐾)( 𝑥)))
125, 7, 10, 11syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → (𝑥(lt‘𝐾)𝑌 ↔ ( 𝑌)(lt‘𝐾)( 𝑥)))
139, 12anbi12d 630 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ (( 𝑥)(lt‘𝐾)( 𝑋) ∧ ( 𝑌)(lt‘𝐾)( 𝑥))))
141, 3opoccl 38796 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑥𝐵) → ( 𝑥) ∈ 𝐵)
15143ad2antl1 1182 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ( 𝑥) ∈ 𝐵)
16 breq2 5153 . . . . . . . . . . . 12 (𝑦 = ( 𝑥) → (( 𝑌)(lt‘𝐾)𝑦 ↔ ( 𝑌)(lt‘𝐾)( 𝑥)))
17 breq1 5152 . . . . . . . . . . . 12 (𝑦 = ( 𝑥) → (𝑦(lt‘𝐾)( 𝑋) ↔ ( 𝑥)(lt‘𝐾)( 𝑋)))
1816, 17anbi12d 630 . . . . . . . . . . 11 (𝑦 = ( 𝑥) → ((( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) ↔ (( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋))))
1918rspcev 3606 . . . . . . . . . 10 ((( 𝑥) ∈ 𝐵 ∧ (( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋))) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))
2019ex 411 . . . . . . . . 9 (( 𝑥) ∈ 𝐵 → ((( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋)) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2115, 20syl 17 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋)) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2221ancomsd 464 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((( 𝑥)(lt‘𝐾)( 𝑋) ∧ ( 𝑌)(lt‘𝐾)( 𝑥)) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2313, 22sylbid 239 . . . . . 6 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2423rexlimdva 3144 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
25 simpl1 1188 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝐾 ∈ OP)
26 simpl3 1190 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝑌𝐵)
27 simpr 483 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
281, 2, 3opltcon1b 38807 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑦𝐵) → (( 𝑌)(lt‘𝐾)𝑦 ↔ ( 𝑦)(lt‘𝐾)𝑌))
2925, 26, 27, 28syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → (( 𝑌)(lt‘𝐾)𝑦 ↔ ( 𝑦)(lt‘𝐾)𝑌))
30 simpl2 1189 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝑋𝐵)
311, 2, 3opltcon2b 38808 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑦𝐵𝑋𝐵) → (𝑦(lt‘𝐾)( 𝑋) ↔ 𝑋(lt‘𝐾)( 𝑦)))
3225, 27, 30, 31syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → (𝑦(lt‘𝐾)( 𝑋) ↔ 𝑋(lt‘𝐾)( 𝑦)))
3329, 32anbi12d 630 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) ↔ (( 𝑦)(lt‘𝐾)𝑌𝑋(lt‘𝐾)( 𝑦))))
341, 3opoccl 38796 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑦𝐵) → ( 𝑦) ∈ 𝐵)
35343ad2antl1 1182 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ( 𝑦) ∈ 𝐵)
36 breq2 5153 . . . . . . . . . . . 12 (𝑥 = ( 𝑦) → (𝑋(lt‘𝐾)𝑥𝑋(lt‘𝐾)( 𝑦)))
37 breq1 5152 . . . . . . . . . . . 12 (𝑥 = ( 𝑦) → (𝑥(lt‘𝐾)𝑌 ↔ ( 𝑦)(lt‘𝐾)𝑌))
3836, 37anbi12d 630 . . . . . . . . . . 11 (𝑥 = ( 𝑦) → ((𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ (𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌)))
3938rspcev 3606 . . . . . . . . . 10 ((( 𝑦) ∈ 𝐵 ∧ (𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌))
4039ex 411 . . . . . . . . 9 (( 𝑦) ∈ 𝐵 → ((𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4135, 40syl 17 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4241ancomsd 464 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((( 𝑦)(lt‘𝐾)𝑌𝑋(lt‘𝐾)( 𝑦)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4333, 42sylbid 239 . . . . . 6 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4443rexlimdva 3144 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4524, 44impbid 211 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
4645notbid 317 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (¬ ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
474, 46anbi12d 630 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)) ↔ (( 𝑌)(lt‘𝐾)( 𝑋) ∧ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))))
48 cvrcon3b.c . . 3 𝐶 = ( ⋖ ‘𝐾)
491, 2, 48cvrval 38871 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌))))
50 simp1 1133 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
511, 3opoccl 38796 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
52513adant2 1128 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
531, 3opoccl 38796 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
54533adant3 1129 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
551, 2, 48cvrval 38871 . . 3 ((𝐾 ∈ OP ∧ ( 𝑌) ∈ 𝐵 ∧ ( 𝑋) ∈ 𝐵) → (( 𝑌)𝐶( 𝑋) ↔ (( 𝑌)(lt‘𝐾)( 𝑋) ∧ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))))
5650, 52, 54, 55syl3anc 1368 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌)𝐶( 𝑋) ↔ (( 𝑌)(lt‘𝐾)( 𝑋) ∧ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))))
5747, 49, 563bitr4d 310 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑌)𝐶( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3059   class class class wbr 5149  cfv 6549  Basecbs 17183  occoc 17244  ltcplt 18303  OPcops 38774  ccvr 38864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-proset 18290  df-poset 18308  df-plt 18325  df-oposet 38778  df-covers 38868
This theorem is referenced by:  cvrcmp2  38886  cvrexch  39023  1cvrco  39075  1cvrjat  39078  lhprelat3N  39643
  Copyright terms: Public domain W3C validator