Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrcon3b Structured version   Visualization version   GIF version

Theorem cvrcon3b 36412
Description: Contraposition law for the covers relation. (cvcon3 30060 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
cvrcon3b.b 𝐵 = (Base‘𝐾)
cvrcon3b.o = (oc‘𝐾)
cvrcon3b.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrcon3b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑌)𝐶( 𝑋)))

Proof of Theorem cvrcon3b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvrcon3b.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2821 . . . 4 (lt‘𝐾) = (lt‘𝐾)
3 cvrcon3b.o . . . 4 = (oc‘𝐾)
41, 2, 3opltcon3b 36339 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋(lt‘𝐾)𝑌 ↔ ( 𝑌)(lt‘𝐾)( 𝑋)))
5 simpl1 1187 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝐾 ∈ OP)
6 simpl2 1188 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝑋𝐵)
7 simpr 487 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
81, 2, 3opltcon3b 36339 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑥𝐵) → (𝑋(lt‘𝐾)𝑥 ↔ ( 𝑥)(lt‘𝐾)( 𝑋)))
95, 6, 7, 8syl3anc 1367 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → (𝑋(lt‘𝐾)𝑥 ↔ ( 𝑥)(lt‘𝐾)( 𝑋)))
10 simpl3 1189 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝑌𝐵)
111, 2, 3opltcon3b 36339 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑥𝐵𝑌𝐵) → (𝑥(lt‘𝐾)𝑌 ↔ ( 𝑌)(lt‘𝐾)( 𝑥)))
125, 7, 10, 11syl3anc 1367 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → (𝑥(lt‘𝐾)𝑌 ↔ ( 𝑌)(lt‘𝐾)( 𝑥)))
139, 12anbi12d 632 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ (( 𝑥)(lt‘𝐾)( 𝑋) ∧ ( 𝑌)(lt‘𝐾)( 𝑥))))
141, 3opoccl 36329 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑥𝐵) → ( 𝑥) ∈ 𝐵)
15143ad2antl1 1181 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ( 𝑥) ∈ 𝐵)
16 breq2 5069 . . . . . . . . . . . 12 (𝑦 = ( 𝑥) → (( 𝑌)(lt‘𝐾)𝑦 ↔ ( 𝑌)(lt‘𝐾)( 𝑥)))
17 breq1 5068 . . . . . . . . . . . 12 (𝑦 = ( 𝑥) → (𝑦(lt‘𝐾)( 𝑋) ↔ ( 𝑥)(lt‘𝐾)( 𝑋)))
1816, 17anbi12d 632 . . . . . . . . . . 11 (𝑦 = ( 𝑥) → ((( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) ↔ (( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋))))
1918rspcev 3622 . . . . . . . . . 10 ((( 𝑥) ∈ 𝐵 ∧ (( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋))) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))
2019ex 415 . . . . . . . . 9 (( 𝑥) ∈ 𝐵 → ((( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋)) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2115, 20syl 17 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋)) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2221ancomsd 468 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((( 𝑥)(lt‘𝐾)( 𝑋) ∧ ( 𝑌)(lt‘𝐾)( 𝑥)) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2313, 22sylbid 242 . . . . . 6 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2423rexlimdva 3284 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
25 simpl1 1187 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝐾 ∈ OP)
26 simpl3 1189 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝑌𝐵)
27 simpr 487 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
281, 2, 3opltcon1b 36340 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑦𝐵) → (( 𝑌)(lt‘𝐾)𝑦 ↔ ( 𝑦)(lt‘𝐾)𝑌))
2925, 26, 27, 28syl3anc 1367 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → (( 𝑌)(lt‘𝐾)𝑦 ↔ ( 𝑦)(lt‘𝐾)𝑌))
30 simpl2 1188 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝑋𝐵)
311, 2, 3opltcon2b 36341 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑦𝐵𝑋𝐵) → (𝑦(lt‘𝐾)( 𝑋) ↔ 𝑋(lt‘𝐾)( 𝑦)))
3225, 27, 30, 31syl3anc 1367 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → (𝑦(lt‘𝐾)( 𝑋) ↔ 𝑋(lt‘𝐾)( 𝑦)))
3329, 32anbi12d 632 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) ↔ (( 𝑦)(lt‘𝐾)𝑌𝑋(lt‘𝐾)( 𝑦))))
341, 3opoccl 36329 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑦𝐵) → ( 𝑦) ∈ 𝐵)
35343ad2antl1 1181 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ( 𝑦) ∈ 𝐵)
36 breq2 5069 . . . . . . . . . . . 12 (𝑥 = ( 𝑦) → (𝑋(lt‘𝐾)𝑥𝑋(lt‘𝐾)( 𝑦)))
37 breq1 5068 . . . . . . . . . . . 12 (𝑥 = ( 𝑦) → (𝑥(lt‘𝐾)𝑌 ↔ ( 𝑦)(lt‘𝐾)𝑌))
3836, 37anbi12d 632 . . . . . . . . . . 11 (𝑥 = ( 𝑦) → ((𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ (𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌)))
3938rspcev 3622 . . . . . . . . . 10 ((( 𝑦) ∈ 𝐵 ∧ (𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌))
4039ex 415 . . . . . . . . 9 (( 𝑦) ∈ 𝐵 → ((𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4135, 40syl 17 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4241ancomsd 468 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((( 𝑦)(lt‘𝐾)𝑌𝑋(lt‘𝐾)( 𝑦)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4333, 42sylbid 242 . . . . . 6 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4443rexlimdva 3284 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4524, 44impbid 214 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
4645notbid 320 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (¬ ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
474, 46anbi12d 632 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)) ↔ (( 𝑌)(lt‘𝐾)( 𝑋) ∧ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))))
48 cvrcon3b.c . . 3 𝐶 = ( ⋖ ‘𝐾)
491, 2, 48cvrval 36404 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌))))
50 simp1 1132 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
511, 3opoccl 36329 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
52513adant2 1127 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
531, 3opoccl 36329 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
54533adant3 1128 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
551, 2, 48cvrval 36404 . . 3 ((𝐾 ∈ OP ∧ ( 𝑌) ∈ 𝐵 ∧ ( 𝑋) ∈ 𝐵) → (( 𝑌)𝐶( 𝑋) ↔ (( 𝑌)(lt‘𝐾)( 𝑋) ∧ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))))
5650, 52, 54, 55syl3anc 1367 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌)𝐶( 𝑋) ↔ (( 𝑌)(lt‘𝐾)( 𝑋) ∧ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))))
5747, 49, 563bitr4d 313 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑌)𝐶( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139   class class class wbr 5065  cfv 6354  Basecbs 16482  occoc 16572  ltcplt 17550  OPcops 36307  ccvr 36397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-ov 7158  df-proset 17537  df-poset 17555  df-plt 17567  df-oposet 36311  df-covers 36401
This theorem is referenced by:  cvrcmp2  36419  cvrexch  36555  1cvrco  36607  1cvrjat  36610  lhprelat3N  37175
  Copyright terms: Public domain W3C validator