Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrcon3b Structured version   Visualization version   GIF version

Theorem cvrcon3b 37270
Description: Contraposition law for the covers relation. (cvcon3 30625 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
cvrcon3b.b 𝐵 = (Base‘𝐾)
cvrcon3b.o = (oc‘𝐾)
cvrcon3b.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrcon3b ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑌)𝐶( 𝑋)))

Proof of Theorem cvrcon3b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvrcon3b.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2739 . . . 4 (lt‘𝐾) = (lt‘𝐾)
3 cvrcon3b.o . . . 4 = (oc‘𝐾)
41, 2, 3opltcon3b 37197 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋(lt‘𝐾)𝑌 ↔ ( 𝑌)(lt‘𝐾)( 𝑋)))
5 simpl1 1189 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝐾 ∈ OP)
6 simpl2 1190 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝑋𝐵)
7 simpr 484 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
81, 2, 3opltcon3b 37197 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑥𝐵) → (𝑋(lt‘𝐾)𝑥 ↔ ( 𝑥)(lt‘𝐾)( 𝑋)))
95, 6, 7, 8syl3anc 1369 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → (𝑋(lt‘𝐾)𝑥 ↔ ( 𝑥)(lt‘𝐾)( 𝑋)))
10 simpl3 1191 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → 𝑌𝐵)
111, 2, 3opltcon3b 37197 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑥𝐵𝑌𝐵) → (𝑥(lt‘𝐾)𝑌 ↔ ( 𝑌)(lt‘𝐾)( 𝑥)))
125, 7, 10, 11syl3anc 1369 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → (𝑥(lt‘𝐾)𝑌 ↔ ( 𝑌)(lt‘𝐾)( 𝑥)))
139, 12anbi12d 630 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ (( 𝑥)(lt‘𝐾)( 𝑋) ∧ ( 𝑌)(lt‘𝐾)( 𝑥))))
141, 3opoccl 37187 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑥𝐵) → ( 𝑥) ∈ 𝐵)
15143ad2antl1 1183 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ( 𝑥) ∈ 𝐵)
16 breq2 5082 . . . . . . . . . . . 12 (𝑦 = ( 𝑥) → (( 𝑌)(lt‘𝐾)𝑦 ↔ ( 𝑌)(lt‘𝐾)( 𝑥)))
17 breq1 5081 . . . . . . . . . . . 12 (𝑦 = ( 𝑥) → (𝑦(lt‘𝐾)( 𝑋) ↔ ( 𝑥)(lt‘𝐾)( 𝑋)))
1816, 17anbi12d 630 . . . . . . . . . . 11 (𝑦 = ( 𝑥) → ((( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) ↔ (( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋))))
1918rspcev 3560 . . . . . . . . . 10 ((( 𝑥) ∈ 𝐵 ∧ (( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋))) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))
2019ex 412 . . . . . . . . 9 (( 𝑥) ∈ 𝐵 → ((( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋)) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2115, 20syl 17 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((( 𝑌)(lt‘𝐾)( 𝑥) ∧ ( 𝑥)(lt‘𝐾)( 𝑋)) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2221ancomsd 465 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((( 𝑥)(lt‘𝐾)( 𝑋) ∧ ( 𝑌)(lt‘𝐾)( 𝑥)) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2313, 22sylbid 239 . . . . . 6 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → ((𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
2423rexlimdva 3214 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) → ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
25 simpl1 1189 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝐾 ∈ OP)
26 simpl3 1191 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝑌𝐵)
27 simpr 484 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝑦𝐵)
281, 2, 3opltcon1b 37198 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑌𝐵𝑦𝐵) → (( 𝑌)(lt‘𝐾)𝑦 ↔ ( 𝑦)(lt‘𝐾)𝑌))
2925, 26, 27, 28syl3anc 1369 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → (( 𝑌)(lt‘𝐾)𝑦 ↔ ( 𝑦)(lt‘𝐾)𝑌))
30 simpl2 1190 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → 𝑋𝐵)
311, 2, 3opltcon2b 37199 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑦𝐵𝑋𝐵) → (𝑦(lt‘𝐾)( 𝑋) ↔ 𝑋(lt‘𝐾)( 𝑦)))
3225, 27, 30, 31syl3anc 1369 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → (𝑦(lt‘𝐾)( 𝑋) ↔ 𝑋(lt‘𝐾)( 𝑦)))
3329, 32anbi12d 630 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) ↔ (( 𝑦)(lt‘𝐾)𝑌𝑋(lt‘𝐾)( 𝑦))))
341, 3opoccl 37187 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑦𝐵) → ( 𝑦) ∈ 𝐵)
35343ad2antl1 1183 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ( 𝑦) ∈ 𝐵)
36 breq2 5082 . . . . . . . . . . . 12 (𝑥 = ( 𝑦) → (𝑋(lt‘𝐾)𝑥𝑋(lt‘𝐾)( 𝑦)))
37 breq1 5081 . . . . . . . . . . . 12 (𝑥 = ( 𝑦) → (𝑥(lt‘𝐾)𝑌 ↔ ( 𝑦)(lt‘𝐾)𝑌))
3836, 37anbi12d 630 . . . . . . . . . . 11 (𝑥 = ( 𝑦) → ((𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ (𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌)))
3938rspcev 3560 . . . . . . . . . 10 ((( 𝑦) ∈ 𝐵 ∧ (𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌))
4039ex 412 . . . . . . . . 9 (( 𝑦) ∈ 𝐵 → ((𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4135, 40syl 17 . . . . . . . 8 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((𝑋(lt‘𝐾)( 𝑦) ∧ ( 𝑦)(lt‘𝐾)𝑌) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4241ancomsd 465 . . . . . . 7 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((( 𝑦)(lt‘𝐾)𝑌𝑋(lt‘𝐾)( 𝑦)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4333, 42sylbid 239 . . . . . 6 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑦𝐵) → ((( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4443rexlimdva 3214 . . . . 5 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)) → ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)))
4524, 44impbid 211 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
4645notbid 317 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (¬ ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌) ↔ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋))))
474, 46anbi12d 630 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌)) ↔ (( 𝑌)(lt‘𝐾)( 𝑋) ∧ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))))
48 cvrcon3b.c . . 3 𝐶 = ( ⋖ ‘𝐾)
491, 2, 48cvrval 37262 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ (𝑋(lt‘𝐾)𝑌 ∧ ¬ ∃𝑥𝐵 (𝑋(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑌))))
50 simp1 1134 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ OP)
511, 3opoccl 37187 . . . 4 ((𝐾 ∈ OP ∧ 𝑌𝐵) → ( 𝑌) ∈ 𝐵)
52513adant2 1129 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑌) ∈ 𝐵)
531, 3opoccl 37187 . . . 4 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ( 𝑋) ∈ 𝐵)
54533adant3 1130 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → ( 𝑋) ∈ 𝐵)
551, 2, 48cvrval 37262 . . 3 ((𝐾 ∈ OP ∧ ( 𝑌) ∈ 𝐵 ∧ ( 𝑋) ∈ 𝐵) → (( 𝑌)𝐶( 𝑋) ↔ (( 𝑌)(lt‘𝐾)( 𝑋) ∧ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))))
5650, 52, 54, 55syl3anc 1369 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (( 𝑌)𝐶( 𝑋) ↔ (( 𝑌)(lt‘𝐾)( 𝑋) ∧ ¬ ∃𝑦𝐵 (( 𝑌)(lt‘𝐾)𝑦𝑦(lt‘𝐾)( 𝑋)))))
5747, 49, 563bitr4d 310 1 ((𝐾 ∈ OP ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌 ↔ ( 𝑌)𝐶( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wrex 3066   class class class wbr 5078  cfv 6430  Basecbs 16893  occoc 16951  ltcplt 18007  OPcops 37165  ccvr 37255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-proset 17994  df-poset 18012  df-plt 18029  df-oposet 37169  df-covers 37259
This theorem is referenced by:  cvrcmp2  37277  cvrexch  37413  1cvrco  37465  1cvrjat  37468  lhprelat3N  38033
  Copyright terms: Public domain W3C validator