MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf2 Structured version   Visualization version   GIF version

Theorem opncldf2 22979
Description: The values of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
Assertion
Ref Expression
opncldf2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐹𝐴) = (𝑋𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐽   𝑢,𝑋
Allowed substitution hint:   𝐹(𝑢)

Proof of Theorem opncldf2
StepHypRef Expression
1 opncldf.2 . 2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
2 difeq2 4086 . 2 (𝑢 = 𝐴 → (𝑋𝑢) = (𝑋𝐴))
3 simpr 484 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)
4 opncldf.1 . . 3 𝑋 = 𝐽
54opncld 22927 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝑋𝐴) ∈ (Clsd‘𝐽))
61, 2, 3, 5fvmptd3 6994 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐹𝐴) = (𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3914   cuni 4874  cmpt 5191  cfv 6514  Topctop 22787  Clsdccld 22910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-top 22788  df-cld 22913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator