MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf2 Structured version   Visualization version   GIF version

Theorem opncldf2 22910
Description: The values of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
Assertion
Ref Expression
opncldf2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐹𝐴) = (𝑋𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐽   𝑢,𝑋
Allowed substitution hint:   𝐹(𝑢)

Proof of Theorem opncldf2
StepHypRef Expression
1 opncldf.2 . 2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
2 difeq2 4108 . 2 (𝑢 = 𝐴 → (𝑋𝑢) = (𝑋𝐴))
3 simpr 484 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)
4 opncldf.1 . . 3 𝑋 = 𝐽
54opncld 22858 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝑋𝐴) ∈ (Clsd‘𝐽))
61, 2, 3, 5fvmptd3 7011 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐹𝐴) = (𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cdif 3937   cuni 4899  cmpt 5221  cfv 6533  Topctop 22716  Clsdccld 22841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-iota 6485  df-fun 6535  df-fv 6541  df-top 22717  df-cld 22844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator