MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf2 Structured version   Visualization version   GIF version

Theorem opncldf2 22236
Description: The values of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
Assertion
Ref Expression
opncldf2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐹𝐴) = (𝑋𝐴))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐽   𝑢,𝑋
Allowed substitution hint:   𝐹(𝑢)

Proof of Theorem opncldf2
StepHypRef Expression
1 opncldf.2 . 2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
2 difeq2 4051 . 2 (𝑢 = 𝐴 → (𝑋𝑢) = (𝑋𝐴))
3 simpr 485 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝐽)
4 opncldf.1 . . 3 𝑋 = 𝐽
54opncld 22184 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝑋𝐴) ∈ (Clsd‘𝐽))
61, 2, 3, 5fvmptd3 6898 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → (𝐹𝐴) = (𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cdif 3884   cuni 4839  cmpt 5157  cfv 6433  Topctop 22042  Clsdccld 22167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-top 22043  df-cld 22170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator