![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opncldf2 | Structured version Visualization version GIF version |
Description: The values of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 |
opncldf.2 | ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) |
Ref | Expression |
---|---|
opncldf2 | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐹‘𝐴) = (𝑋 ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ∈ 𝐽) | |
2 | opncldf.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | opncld 21245 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝑋 ∖ 𝐴) ∈ (Clsd‘𝐽)) |
4 | difeq2 3944 | . . 3 ⊢ (𝑢 = 𝐴 → (𝑋 ∖ 𝑢) = (𝑋 ∖ 𝐴)) | |
5 | opncldf.2 | . . 3 ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) | |
6 | 4, 5 | fvmptg 6540 | . 2 ⊢ ((𝐴 ∈ 𝐽 ∧ (𝑋 ∖ 𝐴) ∈ (Clsd‘𝐽)) → (𝐹‘𝐴) = (𝑋 ∖ 𝐴)) |
7 | 1, 3, 6 | syl2anc 579 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → (𝐹‘𝐴) = (𝑋 ∖ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∖ cdif 3788 ∪ cuni 4671 ↦ cmpt 4965 ‘cfv 6135 Topctop 21105 Clsdccld 21228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-top 21106 df-cld 21231 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |