| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opncldf3 | Structured version Visualization version GIF version | ||
| Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 |
| opncldf.2 | ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) |
| Ref | Expression |
|---|---|
| opncldf3 | ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = (𝑋 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl 22920 | . . . 4 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 2 | opncldf.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | opncldf.2 | . . . . . 6 ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) | |
| 4 | 2, 3 | opncldf1 22978 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
| 5 | 4 | simprd 495 | . . . 4 ⊢ (𝐽 ∈ Top → ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐵 ∈ (Clsd‘𝐽) → ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))) |
| 7 | 6 | fveq1d 6863 | . 2 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵)) |
| 8 | 2 | cldopn 22925 | . . 3 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
| 9 | difeq2 4086 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝐵)) | |
| 10 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)) = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)) | |
| 11 | 9, 10 | fvmptg 6969 | . . 3 ⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝑋 ∖ 𝐵) ∈ 𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵) = (𝑋 ∖ 𝐵)) |
| 12 | 8, 11 | mpdan 687 | . 2 ⊢ (𝐵 ∈ (Clsd‘𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵) = (𝑋 ∖ 𝐵)) |
| 13 | 7, 12 | eqtrd 2765 | 1 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = (𝑋 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∪ cuni 4874 ↦ cmpt 5191 ◡ccnv 5640 –1-1-onto→wf1o 6513 ‘cfv 6514 Topctop 22787 Clsdccld 22910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-top 22788 df-cld 22913 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |