| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opncldf3 | Structured version Visualization version GIF version | ||
| Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 |
| opncldf.2 | ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) |
| Ref | Expression |
|---|---|
| opncldf3 | ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = (𝑋 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl 22941 | . . . 4 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 2 | opncldf.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | opncldf.2 | . . . . . 6 ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) | |
| 4 | 2, 3 | opncldf1 22999 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
| 5 | 4 | simprd 495 | . . . 4 ⊢ (𝐽 ∈ Top → ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐵 ∈ (Clsd‘𝐽) → ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))) |
| 7 | 6 | fveq1d 6824 | . 2 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵)) |
| 8 | 2 | cldopn 22946 | . . 3 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
| 9 | difeq2 4067 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝐵)) | |
| 10 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)) = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)) | |
| 11 | 9, 10 | fvmptg 6927 | . . 3 ⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝑋 ∖ 𝐵) ∈ 𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵) = (𝑋 ∖ 𝐵)) |
| 12 | 8, 11 | mpdan 687 | . 2 ⊢ (𝐵 ∈ (Clsd‘𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵) = (𝑋 ∖ 𝐵)) |
| 13 | 7, 12 | eqtrd 2766 | 1 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = (𝑋 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∪ cuni 4856 ↦ cmpt 5170 ◡ccnv 5613 –1-1-onto→wf1o 6480 ‘cfv 6481 Topctop 22808 Clsdccld 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22809 df-cld 22934 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |