MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf3 Structured version   Visualization version   GIF version

Theorem opncldf3 23022
Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
Assertion
Ref Expression
opncldf3 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = (𝑋𝐵))
Distinct variable groups:   𝑢,𝐽   𝑢,𝑋
Allowed substitution hints:   𝐵(𝑢)   𝐹(𝑢)

Proof of Theorem opncldf3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 22962 . . . 4 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 opncldf.1 . . . . . 6 𝑋 = 𝐽
3 opncldf.2 . . . . . 6 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
42, 3opncldf1 23020 . . . . 5 (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
54simprd 495 . . . 4 (𝐽 ∈ Top → 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)))
61, 5syl 17 . . 3 (𝐵 ∈ (Clsd‘𝐽) → 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)))
76fveq1d 6877 . 2 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵))
82cldopn 22967 . . 3 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
9 difeq2 4095 . . . 4 (𝑥 = 𝐵 → (𝑋𝑥) = (𝑋𝐵))
10 eqid 2735 . . . 4 (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)) = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))
119, 10fvmptg 6983 . . 3 ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝑋𝐵) ∈ 𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵) = (𝑋𝐵))
128, 11mpdan 687 . 2 (𝐵 ∈ (Clsd‘𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵) = (𝑋𝐵))
137, 12eqtrd 2770 1 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = (𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cdif 3923   cuni 4883  cmpt 5201  ccnv 5653  1-1-ontowf1o 6529  cfv 6530  Topctop 22829  Clsdccld 22952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-top 22830  df-cld 22955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator