![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opncldf3 | Structured version Visualization version GIF version |
Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 |
opncldf.2 | ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) |
Ref | Expression |
---|---|
opncldf3 | ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = (𝑋 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 22751 | . . . 4 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | opncldf.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
3 | opncldf.2 | . . . . . 6 ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) | |
4 | 2, 3 | opncldf1 22809 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
5 | 4 | simprd 495 | . . . 4 ⊢ (𝐽 ∈ Top → ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐵 ∈ (Clsd‘𝐽) → ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))) |
7 | 6 | fveq1d 6893 | . 2 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵)) |
8 | 2 | cldopn 22756 | . . 3 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
9 | difeq2 4116 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝐵)) | |
10 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)) = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)) | |
11 | 9, 10 | fvmptg 6996 | . . 3 ⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝑋 ∖ 𝐵) ∈ 𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵) = (𝑋 ∖ 𝐵)) |
12 | 8, 11 | mpdan 684 | . 2 ⊢ (𝐵 ∈ (Clsd‘𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵) = (𝑋 ∖ 𝐵)) |
13 | 7, 12 | eqtrd 2771 | 1 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = (𝑋 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∖ cdif 3945 ∪ cuni 4908 ↦ cmpt 5231 ◡ccnv 5675 –1-1-onto→wf1o 6542 ‘cfv 6543 Topctop 22616 Clsdccld 22741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-top 22617 df-cld 22744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |