MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf3 Structured version   Visualization version   GIF version

Theorem opncldf3 22811
Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
Assertion
Ref Expression
opncldf3 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = (𝑋𝐵))
Distinct variable groups:   𝑢,𝐽   𝑢,𝑋
Allowed substitution hints:   𝐵(𝑢)   𝐹(𝑢)

Proof of Theorem opncldf3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 22751 . . . 4 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 opncldf.1 . . . . . 6 𝑋 = 𝐽
3 opncldf.2 . . . . . 6 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
42, 3opncldf1 22809 . . . . 5 (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
54simprd 495 . . . 4 (𝐽 ∈ Top → 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)))
61, 5syl 17 . . 3 (𝐵 ∈ (Clsd‘𝐽) → 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)))
76fveq1d 6893 . 2 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵))
82cldopn 22756 . . 3 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
9 difeq2 4116 . . . 4 (𝑥 = 𝐵 → (𝑋𝑥) = (𝑋𝐵))
10 eqid 2731 . . . 4 (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)) = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))
119, 10fvmptg 6996 . . 3 ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝑋𝐵) ∈ 𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵) = (𝑋𝐵))
128, 11mpdan 684 . 2 (𝐵 ∈ (Clsd‘𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵) = (𝑋𝐵))
137, 12eqtrd 2771 1 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = (𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cdif 3945   cuni 4908  cmpt 5231  ccnv 5675  1-1-ontowf1o 6542  cfv 6543  Topctop 22616  Clsdccld 22741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22617  df-cld 22744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator