MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf3 Structured version   Visualization version   GIF version

Theorem opncldf3 22980
Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
Assertion
Ref Expression
opncldf3 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = (𝑋𝐵))
Distinct variable groups:   𝑢,𝐽   𝑢,𝑋
Allowed substitution hints:   𝐵(𝑢)   𝐹(𝑢)

Proof of Theorem opncldf3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 22920 . . . 4 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 opncldf.1 . . . . . 6 𝑋 = 𝐽
3 opncldf.2 . . . . . 6 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
42, 3opncldf1 22978 . . . . 5 (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
54simprd 495 . . . 4 (𝐽 ∈ Top → 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)))
61, 5syl 17 . . 3 (𝐵 ∈ (Clsd‘𝐽) → 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)))
76fveq1d 6863 . 2 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵))
82cldopn 22925 . . 3 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
9 difeq2 4086 . . . 4 (𝑥 = 𝐵 → (𝑋𝑥) = (𝑋𝐵))
10 eqid 2730 . . . 4 (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)) = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))
119, 10fvmptg 6969 . . 3 ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝑋𝐵) ∈ 𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵) = (𝑋𝐵))
128, 11mpdan 687 . 2 (𝐵 ∈ (Clsd‘𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵) = (𝑋𝐵))
137, 12eqtrd 2765 1 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = (𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3914   cuni 4874  cmpt 5191  ccnv 5640  1-1-ontowf1o 6513  cfv 6514  Topctop 22787  Clsdccld 22910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-cld 22913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator