| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opncldf3 | Structured version Visualization version GIF version | ||
| Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 |
| opncldf.2 | ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) |
| Ref | Expression |
|---|---|
| opncldf3 | ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = (𝑋 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl 23034 | . . . 4 ⊢ (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 2 | opncldf.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | opncldf.2 | . . . . . 6 ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) | |
| 4 | 2, 3 | opncldf1 23092 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
| 5 | 4 | simprd 495 | . . . 4 ⊢ (𝐽 ∈ Top → ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))) |
| 6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐵 ∈ (Clsd‘𝐽) → ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))) |
| 7 | 6 | fveq1d 6908 | . 2 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵)) |
| 8 | 2 | cldopn 23039 | . . 3 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝐵) ∈ 𝐽) |
| 9 | difeq2 4120 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑋 ∖ 𝑥) = (𝑋 ∖ 𝐵)) | |
| 10 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)) = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)) | |
| 11 | 9, 10 | fvmptg 7014 | . . 3 ⊢ ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝑋 ∖ 𝐵) ∈ 𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵) = (𝑋 ∖ 𝐵)) |
| 12 | 8, 11 | mpdan 687 | . 2 ⊢ (𝐵 ∈ (Clsd‘𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥))‘𝐵) = (𝑋 ∖ 𝐵)) |
| 13 | 7, 12 | eqtrd 2777 | 1 ⊢ (𝐵 ∈ (Clsd‘𝐽) → (◡𝐹‘𝐵) = (𝑋 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 ∪ cuni 4907 ↦ cmpt 5225 ◡ccnv 5684 –1-1-onto→wf1o 6560 ‘cfv 6561 Topctop 22899 Clsdccld 23024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-top 22900 df-cld 23027 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |