MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf3 Structured version   Visualization version   GIF version

Theorem opncldf3 23001
Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1 𝑋 = 𝐽
opncldf.2 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
Assertion
Ref Expression
opncldf3 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = (𝑋𝐵))
Distinct variable groups:   𝑢,𝐽   𝑢,𝑋
Allowed substitution hints:   𝐵(𝑢)   𝐹(𝑢)

Proof of Theorem opncldf3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cldrcl 22941 . . . 4 (𝐵 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 opncldf.1 . . . . . 6 𝑋 = 𝐽
3 opncldf.2 . . . . . 6 𝐹 = (𝑢𝐽 ↦ (𝑋𝑢))
42, 3opncldf1 22999 . . . . 5 (𝐽 ∈ Top → (𝐹:𝐽1-1-onto→(Clsd‘𝐽) ∧ 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))))
54simprd 495 . . . 4 (𝐽 ∈ Top → 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)))
61, 5syl 17 . . 3 (𝐵 ∈ (Clsd‘𝐽) → 𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)))
76fveq1d 6824 . 2 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵))
82cldopn 22946 . . 3 (𝐵 ∈ (Clsd‘𝐽) → (𝑋𝐵) ∈ 𝐽)
9 difeq2 4067 . . . 4 (𝑥 = 𝐵 → (𝑋𝑥) = (𝑋𝐵))
10 eqid 2731 . . . 4 (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥)) = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))
119, 10fvmptg 6927 . . 3 ((𝐵 ∈ (Clsd‘𝐽) ∧ (𝑋𝐵) ∈ 𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵) = (𝑋𝐵))
128, 11mpdan 687 . 2 (𝐵 ∈ (Clsd‘𝐽) → ((𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋𝑥))‘𝐵) = (𝑋𝐵))
137, 12eqtrd 2766 1 (𝐵 ∈ (Clsd‘𝐽) → (𝐹𝐵) = (𝑋𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cdif 3894   cuni 4856  cmpt 5170  ccnv 5613  1-1-ontowf1o 6480  cfv 6481  Topctop 22808  Clsdccld 22931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-top 22809  df-cld 22934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator