Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > txswaphmeolem | Structured version Visualization version GIF version |
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
txswaphmeolem | ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 = 〈𝑥, 𝑦〉) | |
2 | 1 | mpompt 7260 | . 2 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉) |
3 | mptresid 5890 | . 2 ⊢ ( I ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) | |
4 | opelxpi 5561 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) | |
5 | 4 | ancoms 462 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
6 | 5 | adantl 485 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
7 | eqidd 2759 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) | |
8 | sneq 4532 | . . . . . . . . . 10 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → {𝑧} = {〈𝑦, 𝑥〉}) | |
9 | 8 | cnveqd 5715 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ◡{𝑧} = ◡{〈𝑦, 𝑥〉}) |
10 | 9 | unieqd 4812 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ∪ ◡{𝑧} = ∪ ◡{〈𝑦, 𝑥〉}) |
11 | opswap 6058 | . . . . . . . 8 ⊢ ∪ ◡{〈𝑦, 𝑥〉} = 〈𝑥, 𝑦〉 | |
12 | 10, 11 | eqtrdi 2809 | . . . . . . 7 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ∪ ◡{𝑧} = 〈𝑥, 𝑦〉) |
13 | 12 | mpompt 7260 | . . . . . 6 ⊢ (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) |
14 | 13 | eqcomi 2767 | . . . . 5 ⊢ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) |
15 | 14 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧})) |
16 | 6, 7, 15, 12 | fmpoco 7795 | . . 3 ⊢ (⊤ → ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉)) |
17 | 16 | mptru 1545 | . 2 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉) |
18 | 2, 3, 17 | 3eqtr4ri 2792 | 1 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ⊤wtru 1539 ∈ wcel 2111 {csn 4522 〈cop 4528 ∪ cuni 4798 ↦ cmpt 5112 I cid 5429 × cxp 5522 ◡ccnv 5523 ↾ cres 5526 ∘ ccom 5528 ∈ cmpo 7152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 |
This theorem is referenced by: txswaphmeo 22505 |
Copyright terms: Public domain | W3C validator |