![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > txswaphmeolem | Structured version Visualization version GIF version |
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
txswaphmeolem | ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝑧 = 〈𝑥, 𝑦〉) | |
2 | 1 | mpompt 7564 | . 2 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉) |
3 | mptresid 6080 | . 2 ⊢ ( I ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) | |
4 | opelxpi 5737 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) | |
5 | 4 | ancoms 458 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 〈𝑦, 𝑥〉 ∈ (𝑌 × 𝑋)) |
7 | eqidd 2741 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) | |
8 | sneq 4658 | . . . . . . . . . 10 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → {𝑧} = {〈𝑦, 𝑥〉}) | |
9 | 8 | cnveqd 5900 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ◡{𝑧} = ◡{〈𝑦, 𝑥〉}) |
10 | 9 | unieqd 4944 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ∪ ◡{𝑧} = ∪ ◡{〈𝑦, 𝑥〉}) |
11 | opswap 6260 | . . . . . . . 8 ⊢ ∪ ◡{〈𝑦, 𝑥〉} = 〈𝑥, 𝑦〉 | |
12 | 10, 11 | eqtrdi 2796 | . . . . . . 7 ⊢ (𝑧 = 〈𝑦, 𝑥〉 → ∪ ◡{𝑧} = 〈𝑥, 𝑦〉) |
13 | 12 | mpompt 7564 | . . . . . 6 ⊢ (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) |
14 | 13 | eqcomi 2749 | . . . . 5 ⊢ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) |
15 | 14 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧})) |
16 | 6, 7, 15, 12 | fmpoco 8136 | . . 3 ⊢ (⊤ → ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉)) |
17 | 16 | mptru 1544 | . 2 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑥, 𝑦〉) |
18 | 2, 3, 17 | 3eqtr4ri 2779 | 1 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ 〈𝑥, 𝑦〉) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈𝑦, 𝑥〉)) = ( I ↾ (𝑋 × 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 {csn 4648 〈cop 4654 ∪ cuni 4931 ↦ cmpt 5249 I cid 5592 × cxp 5698 ◡ccnv 5699 ↾ cres 5702 ∘ ccom 5704 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: txswaphmeo 23834 |
Copyright terms: Public domain | W3C validator |