![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > txswaphmeolem | Structured version Visualization version GIF version |
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
txswaphmeolem | ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑥, 𝑦⟩) | |
2 | 1 | mpompt 7525 | . 2 ⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑥, 𝑦⟩) |
3 | mptresid 6051 | . 2 ⊢ ( I ↾ (𝑋 × 𝑌)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) | |
4 | opelxpi 5714 | . . . . . 6 ⊢ ((𝑦 ∈ 𝑌 ∧ 𝑥 ∈ 𝑋) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋)) | |
5 | 4 | ancoms 458 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋)) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → ⟨𝑦, 𝑥⟩ ∈ (𝑌 × 𝑋)) |
7 | eqidd 2732 | . . . 4 ⊢ (⊤ → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩)) | |
8 | sneq 4639 | . . . . . . . . . 10 ⊢ (𝑧 = ⟨𝑦, 𝑥⟩ → {𝑧} = {⟨𝑦, 𝑥⟩}) | |
9 | 8 | cnveqd 5876 | . . . . . . . . 9 ⊢ (𝑧 = ⟨𝑦, 𝑥⟩ → ◡{𝑧} = ◡{⟨𝑦, 𝑥⟩}) |
10 | 9 | unieqd 4923 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑦, 𝑥⟩ → ∪ ◡{𝑧} = ∪ ◡{⟨𝑦, 𝑥⟩}) |
11 | opswap 6229 | . . . . . . . 8 ⊢ ∪ ◡{⟨𝑦, 𝑥⟩} = ⟨𝑥, 𝑦⟩ | |
12 | 10, 11 | eqtrdi 2787 | . . . . . . 7 ⊢ (𝑧 = ⟨𝑦, 𝑥⟩ → ∪ ◡{𝑧} = ⟨𝑥, 𝑦⟩) |
13 | 12 | mpompt 7525 | . . . . . 6 ⊢ (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) = (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) |
14 | 13 | eqcomi 2740 | . . . . 5 ⊢ (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧}) |
15 | 14 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) = (𝑧 ∈ (𝑌 × 𝑋) ↦ ∪ ◡{𝑧})) |
16 | 6, 7, 15, 12 | fmpoco 8084 | . . 3 ⊢ (⊤ → ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑥, 𝑦⟩)) |
17 | 16 | mptru 1547 | . 2 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑥, 𝑦⟩) |
18 | 2, 3, 17 | 3eqtr4ri 2770 | 1 ⊢ ((𝑦 ∈ 𝑌, 𝑥 ∈ 𝑋 ↦ ⟨𝑥, 𝑦⟩) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ⟨𝑦, 𝑥⟩)) = ( I ↾ (𝑋 × 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 {csn 4629 ⟨cop 4635 ∪ cuni 4909 ↦ cmpt 5232 I cid 5574 × cxp 5675 ◡ccnv 5676 ↾ cres 5679 ∘ ccom 5681 ∈ cmpo 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 |
This theorem is referenced by: txswaphmeo 23530 |
Copyright terms: Public domain | W3C validator |