MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oewordi Structured version   Visualization version   GIF version

Theorem oewordi 8647
Description: Weak ordering property of ordinal exponentiation. Lemma 3.19 of [Schloeder] p. 10. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oewordi (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))

Proof of Theorem oewordi
StepHypRef Expression
1 eloni 6405 . . . . . 6 (𝐶 ∈ On → Ord 𝐶)
2 ordgt0ge1 8549 . . . . . 6 (Ord 𝐶 → (∅ ∈ 𝐶 ↔ 1o𝐶))
31, 2syl 17 . . . . 5 (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ 1o𝐶))
4 1on 8534 . . . . . 6 1o ∈ On
5 onsseleq 6436 . . . . . 6 ((1o ∈ On ∧ 𝐶 ∈ On) → (1o𝐶 ↔ (1o𝐶 ∨ 1o = 𝐶)))
64, 5mpan 689 . . . . 5 (𝐶 ∈ On → (1o𝐶 ↔ (1o𝐶 ∨ 1o = 𝐶)))
73, 6bitrd 279 . . . 4 (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ (1o𝐶 ∨ 1o = 𝐶)))
873ad2ant3 1135 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 ↔ (1o𝐶 ∨ 1o = 𝐶)))
9 ondif2 8558 . . . . . . 7 (𝐶 ∈ (On ∖ 2o) ↔ (𝐶 ∈ On ∧ 1o𝐶))
10 oeword 8646 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 ↔ (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
1110biimpd 229 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
12113expia 1121 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ (On ∖ 2o) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
139, 12biimtrrid 243 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐶 ∈ On ∧ 1o𝐶) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
1413expd 415 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ On → (1o𝐶 → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))))
15143impia 1117 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (1o𝐶 → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
16 oe1m 8601 . . . . . . . . . 10 (𝐴 ∈ On → (1oo 𝐴) = 1o)
1716adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1oo 𝐴) = 1o)
18 oe1m 8601 . . . . . . . . . 10 (𝐵 ∈ On → (1oo 𝐵) = 1o)
1918adantl 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1oo 𝐵) = 1o)
2017, 19eqtr4d 2783 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1oo 𝐴) = (1oo 𝐵))
21 eqimss 4067 . . . . . . . 8 ((1oo 𝐴) = (1oo 𝐵) → (1oo 𝐴) ⊆ (1oo 𝐵))
2220, 21syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1oo 𝐴) ⊆ (1oo 𝐵))
23 oveq1 7455 . . . . . . . 8 (1o = 𝐶 → (1oo 𝐴) = (𝐶o 𝐴))
24 oveq1 7455 . . . . . . . 8 (1o = 𝐶 → (1oo 𝐵) = (𝐶o 𝐵))
2523, 24sseq12d 4042 . . . . . . 7 (1o = 𝐶 → ((1oo 𝐴) ⊆ (1oo 𝐵) ↔ (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
2622, 25syl5ibcom 245 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o = 𝐶 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
27263adant3 1132 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (1o = 𝐶 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
2827a1dd 50 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (1o = 𝐶 → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
2915, 28jaod 858 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((1o𝐶 ∨ 1o = 𝐶) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
308, 29sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
3130imp 406 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  cdif 3973  wss 3976  c0 4352  Ord word 6394  Oncon0 6395  (class class class)co 7448  1oc1o 8515  2oc2o 8516  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528
This theorem is referenced by:  oelim2  8651  oeoalem  8652  oeoelem  8654  oaabs2  8705  cantnflt  9741  cnfcom  9769  oege1  43268  cantnf2  43287  omabs2  43294  omltoe  43369
  Copyright terms: Public domain W3C validator