MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oewordi Structured version   Visualization version   GIF version

Theorem oewordi 8558
Description: Weak ordering property of ordinal exponentiation. Lemma 3.19 of [Schloeder] p. 10. (Contributed by NM, 6-Jan-2005.)
Assertion
Ref Expression
oewordi (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))

Proof of Theorem oewordi
StepHypRef Expression
1 eloni 6345 . . . . . 6 (𝐶 ∈ On → Ord 𝐶)
2 ordgt0ge1 8460 . . . . . 6 (Ord 𝐶 → (∅ ∈ 𝐶 ↔ 1o𝐶))
31, 2syl 17 . . . . 5 (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ 1o𝐶))
4 1on 8449 . . . . . 6 1o ∈ On
5 onsseleq 6376 . . . . . 6 ((1o ∈ On ∧ 𝐶 ∈ On) → (1o𝐶 ↔ (1o𝐶 ∨ 1o = 𝐶)))
64, 5mpan 690 . . . . 5 (𝐶 ∈ On → (1o𝐶 ↔ (1o𝐶 ∨ 1o = 𝐶)))
73, 6bitrd 279 . . . 4 (𝐶 ∈ On → (∅ ∈ 𝐶 ↔ (1o𝐶 ∨ 1o = 𝐶)))
873ad2ant3 1135 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 ↔ (1o𝐶 ∨ 1o = 𝐶)))
9 ondif2 8469 . . . . . . 7 (𝐶 ∈ (On ∖ 2o) ↔ (𝐶 ∈ On ∧ 1o𝐶))
10 oeword 8557 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 ↔ (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
1110biimpd 229 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
12113expia 1121 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ (On ∖ 2o) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
139, 12biimtrrid 243 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐶 ∈ On ∧ 1o𝐶) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
1413expd 415 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ On → (1o𝐶 → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))))
15143impia 1117 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (1o𝐶 → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
16 oe1m 8512 . . . . . . . . . 10 (𝐴 ∈ On → (1oo 𝐴) = 1o)
1716adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1oo 𝐴) = 1o)
18 oe1m 8512 . . . . . . . . . 10 (𝐵 ∈ On → (1oo 𝐵) = 1o)
1918adantl 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1oo 𝐵) = 1o)
2017, 19eqtr4d 2768 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1oo 𝐴) = (1oo 𝐵))
21 eqimss 4008 . . . . . . . 8 ((1oo 𝐴) = (1oo 𝐵) → (1oo 𝐴) ⊆ (1oo 𝐵))
2220, 21syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1oo 𝐴) ⊆ (1oo 𝐵))
23 oveq1 7397 . . . . . . . 8 (1o = 𝐶 → (1oo 𝐴) = (𝐶o 𝐴))
24 oveq1 7397 . . . . . . . 8 (1o = 𝐶 → (1oo 𝐵) = (𝐶o 𝐵))
2523, 24sseq12d 3983 . . . . . . 7 (1o = 𝐶 → ((1oo 𝐴) ⊆ (1oo 𝐵) ↔ (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
2622, 25syl5ibcom 245 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o = 𝐶 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
27263adant3 1132 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (1o = 𝐶 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
2827a1dd 50 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (1o = 𝐶 → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
2915, 28jaod 859 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((1o𝐶 ∨ 1o = 𝐶) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
308, 29sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵))))
3130imp 406 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶o 𝐴) ⊆ (𝐶o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cdif 3914  wss 3917  c0 4299  Ord word 6334  Oncon0 6335  (class class class)co 7390  1oc1o 8430  2oc2o 8431  o coe 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-oexp 8443
This theorem is referenced by:  oelim2  8562  oeoalem  8563  oeoelem  8565  oaabs2  8616  cantnflt  9632  cnfcom  9660  oege1  43302  cantnf2  43321  omabs2  43328  omltoe  43403
  Copyright terms: Public domain W3C validator