![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omword2 | Structured version Visualization version GIF version |
Description: An ordinal is less than or equal to its product with another. Lemma 3.12 of [Schloeder] p. 9. (Contributed by NM, 21-Dec-2004.) |
Ref | Expression |
---|---|
omword2 | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐵 ·o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om1r 8562 | . . 3 ⊢ (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴) | |
2 | 1 | ad2antrr 724 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o ·o 𝐴) = 𝐴) |
3 | eloni 6375 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
4 | ordgt0ge1 8512 | . . . . . 6 ⊢ (Ord 𝐵 → (∅ ∈ 𝐵 ↔ 1o ⊆ 𝐵)) | |
5 | 4 | biimpa 475 | . . . . 5 ⊢ ((Ord 𝐵 ∧ ∅ ∈ 𝐵) → 1o ⊆ 𝐵) |
6 | 3, 5 | sylan 578 | . . . 4 ⊢ ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → 1o ⊆ 𝐵) |
7 | 6 | adantll 712 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 1o ⊆ 𝐵) |
8 | 1on 8497 | . . . . . 6 ⊢ 1o ∈ On | |
9 | omwordri 8591 | . . . . . 6 ⊢ ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o ⊆ 𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴))) | |
10 | 8, 9 | mp3an1 1445 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o ⊆ 𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴))) |
11 | 10 | ancoms 457 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o ⊆ 𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴))) |
12 | 11 | adantr 479 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o ⊆ 𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴))) |
13 | 7, 12 | mpd 15 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴)) |
14 | 2, 13 | eqsstrrd 4018 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐵 ·o 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ⊆ wss 3946 ∅c0 4322 Ord word 6364 Oncon0 6365 (class class class)co 7413 1oc1o 8478 ·o comu 8483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 |
This theorem is referenced by: omeulem1 8601 omabslem 8669 omabs 8670 omge2 42998 |
Copyright terms: Public domain | W3C validator |