| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omword2 | Structured version Visualization version GIF version | ||
| Description: An ordinal is less than or equal to its product with another. Lemma 3.12 of [Schloeder] p. 9. (Contributed by NM, 21-Dec-2004.) |
| Ref | Expression |
|---|---|
| omword2 | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐵 ·o 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om1r 8581 | . . 3 ⊢ (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴) | |
| 2 | 1 | ad2antrr 726 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o ·o 𝐴) = 𝐴) |
| 3 | eloni 6394 | . . . . 5 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 4 | ordgt0ge1 8531 | . . . . . 6 ⊢ (Ord 𝐵 → (∅ ∈ 𝐵 ↔ 1o ⊆ 𝐵)) | |
| 5 | 4 | biimpa 476 | . . . . 5 ⊢ ((Ord 𝐵 ∧ ∅ ∈ 𝐵) → 1o ⊆ 𝐵) |
| 6 | 3, 5 | sylan 580 | . . . 4 ⊢ ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → 1o ⊆ 𝐵) |
| 7 | 6 | adantll 714 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 1o ⊆ 𝐵) |
| 8 | 1on 8518 | . . . . . 6 ⊢ 1o ∈ On | |
| 9 | omwordri 8610 | . . . . . 6 ⊢ ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o ⊆ 𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴))) | |
| 10 | 8, 9 | mp3an1 1450 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o ⊆ 𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴))) |
| 11 | 10 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o ⊆ 𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴))) |
| 12 | 11 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o ⊆ 𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴))) |
| 13 | 7, 12 | mpd 15 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴)) |
| 14 | 2, 13 | eqsstrrd 4019 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐵 ·o 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ∅c0 4333 Ord word 6383 Oncon0 6384 (class class class)co 7431 1oc1o 8499 ·o comu 8504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-omul 8511 |
| This theorem is referenced by: omeulem1 8620 omabslem 8688 omabs 8689 omge2 43311 |
| Copyright terms: Public domain | W3C validator |