MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omword2 Structured version   Visualization version   GIF version

Theorem omword2 8593
Description: An ordinal is less than or equal to its product with another. Lemma 3.12 of [Schloeder] p. 9. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omword2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐵 ·o 𝐴))

Proof of Theorem omword2
StepHypRef Expression
1 om1r 8562 . . 3 (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)
21ad2antrr 724 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o ·o 𝐴) = 𝐴)
3 eloni 6375 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
4 ordgt0ge1 8512 . . . . . 6 (Ord 𝐵 → (∅ ∈ 𝐵 ↔ 1o𝐵))
54biimpa 475 . . . . 5 ((Ord 𝐵 ∧ ∅ ∈ 𝐵) → 1o𝐵)
63, 5sylan 578 . . . 4 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → 1o𝐵)
76adantll 712 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 1o𝐵)
8 1on 8497 . . . . . 6 1o ∈ On
9 omwordri 8591 . . . . . 6 ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴)))
108, 9mp3an1 1445 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴)))
1110ancoms 457 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴)))
1211adantr 479 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴)))
137, 12mpd 15 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴))
142, 13eqsstrrd 4018 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wss 3946  c0 4322  Ord word 6364  Oncon0 6365  (class class class)co 7413  1oc1o 8478   ·o comu 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490
This theorem is referenced by:  omeulem1  8601  omabslem  8669  omabs  8670  omge2  42998
  Copyright terms: Public domain W3C validator