MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omword2 Structured version   Visualization version   GIF version

Theorem omword2 8515
Description: An ordinal is less than or equal to its product with another. Lemma 3.12 of [Schloeder] p. 9. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omword2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐵 ·o 𝐴))

Proof of Theorem omword2
StepHypRef Expression
1 om1r 8484 . . 3 (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)
21ad2antrr 726 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o ·o 𝐴) = 𝐴)
3 eloni 6330 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
4 ordgt0ge1 8434 . . . . . 6 (Ord 𝐵 → (∅ ∈ 𝐵 ↔ 1o𝐵))
54biimpa 476 . . . . 5 ((Ord 𝐵 ∧ ∅ ∈ 𝐵) → 1o𝐵)
63, 5sylan 580 . . . 4 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → 1o𝐵)
76adantll 714 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 1o𝐵)
8 1on 8423 . . . . . 6 1o ∈ On
9 omwordri 8513 . . . . . 6 ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴)))
108, 9mp3an1 1450 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴)))
1110ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴)))
1211adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o𝐵 → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴)))
137, 12mpd 15 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (1o ·o 𝐴) ⊆ (𝐵 ·o 𝐴))
142, 13eqsstrrd 3979 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911  c0 4292  Ord word 6319  Oncon0 6320  (class class class)co 7369  1oc1o 8404   ·o comu 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416
This theorem is referenced by:  omeulem1  8523  omabslem  8591  omabs  8592  omge2  43280
  Copyright terms: Public domain W3C validator