MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omword1 Structured version   Visualization version   GIF version

Theorem omword1 8488
Description: An ordinal is less than or equal to its product with another. Lemma 3.11 of [Schloeder] p. 8. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omword1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))

Proof of Theorem omword1
StepHypRef Expression
1 eloni 6316 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 ordgt0ge1 8408 . . . . 5 (Ord 𝐵 → (∅ ∈ 𝐵 ↔ 1o𝐵))
31, 2syl 17 . . . 4 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ 1o𝐵))
43adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ 1o𝐵))
5 1on 8397 . . . . . 6 1o ∈ On
6 omwordi 8486 . . . . . 6 ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
75, 6mp3an1 1450 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
87ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
9 om1 8457 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴)
109adantr 480 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 1o) = 𝐴)
1110sseq1d 3961 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵) ↔ 𝐴 ⊆ (𝐴 ·o 𝐵)))
128, 11sylibd 239 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
134, 12sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
1413imp 406 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897  c0 4280  Ord word 6305  Oncon0 6306  (class class class)co 7346  1oc1o 8378   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390
This theorem is referenced by:  om00  8490  cantnflem3  9581  cantnflem4  9582  cnfcomlem  9589  omge1  43400  cantnftermord  43423  naddwordnexlem4  43504
  Copyright terms: Public domain W3C validator