MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omword1 Structured version   Visualization version   GIF version

Theorem omword1 8590
Description: An ordinal is less than or equal to its product with another. Lemma 3.11 of [Schloeder] p. 8. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omword1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))

Proof of Theorem omword1
StepHypRef Expression
1 eloni 6367 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 ordgt0ge1 8510 . . . . 5 (Ord 𝐵 → (∅ ∈ 𝐵 ↔ 1o𝐵))
31, 2syl 17 . . . 4 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ 1o𝐵))
43adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ 1o𝐵))
5 1on 8497 . . . . . 6 1o ∈ On
6 omwordi 8588 . . . . . 6 ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
75, 6mp3an1 1450 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
87ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
9 om1 8559 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴)
109adantr 480 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 1o) = 𝐴)
1110sseq1d 3995 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵) ↔ 𝐴 ⊆ (𝐴 ·o 𝐵)))
128, 11sylibd 239 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
134, 12sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
1413imp 406 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3931  c0 4313  Ord word 6356  Oncon0 6357  (class class class)co 7410  1oc1o 8478   ·o comu 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490
This theorem is referenced by:  om00  8592  cantnflem3  9710  cantnflem4  9711  cnfcomlem  9718  omge1  43288  cantnftermord  43311  naddwordnexlem4  43392
  Copyright terms: Public domain W3C validator