MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omword1 Structured version   Visualization version   GIF version

Theorem omword1 8524
Description: An ordinal is less than or equal to its product with another. Lemma 3.11 of [Schloeder] p. 8. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omword1 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โˆง โˆ… โˆˆ ๐ต) โ†’ ๐ด โŠ† (๐ด ยทo ๐ต))

Proof of Theorem omword1
StepHypRef Expression
1 eloni 6331 . . . . 5 (๐ต โˆˆ On โ†’ Ord ๐ต)
2 ordgt0ge1 8443 . . . . 5 (Ord ๐ต โ†’ (โˆ… โˆˆ ๐ต โ†” 1o โŠ† ๐ต))
31, 2syl 17 . . . 4 (๐ต โˆˆ On โ†’ (โˆ… โˆˆ ๐ต โ†” 1o โŠ† ๐ต))
43adantl 483 . . 3 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (โˆ… โˆˆ ๐ต โ†” 1o โŠ† ๐ต))
5 1on 8428 . . . . . 6 1o โˆˆ On
6 omwordi 8522 . . . . . 6 ((1o โˆˆ On โˆง ๐ต โˆˆ On โˆง ๐ด โˆˆ On) โ†’ (1o โŠ† ๐ต โ†’ (๐ด ยทo 1o) โŠ† (๐ด ยทo ๐ต)))
75, 6mp3an1 1449 . . . . 5 ((๐ต โˆˆ On โˆง ๐ด โˆˆ On) โ†’ (1o โŠ† ๐ต โ†’ (๐ด ยทo 1o) โŠ† (๐ด ยทo ๐ต)))
87ancoms 460 . . . 4 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (1o โŠ† ๐ต โ†’ (๐ด ยทo 1o) โŠ† (๐ด ยทo ๐ต)))
9 om1 8493 . . . . . 6 (๐ด โˆˆ On โ†’ (๐ด ยทo 1o) = ๐ด)
109adantr 482 . . . . 5 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (๐ด ยทo 1o) = ๐ด)
1110sseq1d 3979 . . . 4 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ ((๐ด ยทo 1o) โŠ† (๐ด ยทo ๐ต) โ†” ๐ด โŠ† (๐ด ยทo ๐ต)))
128, 11sylibd 238 . . 3 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (1o โŠ† ๐ต โ†’ ๐ด โŠ† (๐ด ยทo ๐ต)))
134, 12sylbid 239 . 2 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (โˆ… โˆˆ ๐ต โ†’ ๐ด โŠ† (๐ด ยทo ๐ต)))
1413imp 408 1 (((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โˆง โˆ… โˆˆ ๐ต) โ†’ ๐ด โŠ† (๐ด ยทo ๐ต))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107   โŠ† wss 3914  โˆ…c0 4286  Ord word 6320  Oncon0 6321  (class class class)co 7361  1oc1o 8409   ยทo comu 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-oadd 8420  df-omul 8421
This theorem is referenced by:  om00  8526  cantnflem3  9635  cantnflem4  9636  cnfcomlem  9643  omge1  41679  cantnftermord  41702  naddwordnexlem4  41765
  Copyright terms: Public domain W3C validator