MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omword1 Structured version   Visualization version   GIF version

Theorem omword1 8612
Description: An ordinal is less than or equal to its product with another. Lemma 3.11 of [Schloeder] p. 8. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omword1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))

Proof of Theorem omword1
StepHypRef Expression
1 eloni 6393 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
2 ordgt0ge1 8532 . . . . 5 (Ord 𝐵 → (∅ ∈ 𝐵 ↔ 1o𝐵))
31, 2syl 17 . . . 4 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ 1o𝐵))
43adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵 ↔ 1o𝐵))
5 1on 8519 . . . . . 6 1o ∈ On
6 omwordi 8610 . . . . . 6 ((1o ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
75, 6mp3an1 1449 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
87ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o𝐵 → (𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵)))
9 om1 8581 . . . . . 6 (𝐴 ∈ On → (𝐴 ·o 1o) = 𝐴)
109adantr 480 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 1o) = 𝐴)
1110sseq1d 4014 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 1o) ⊆ (𝐴 ·o 𝐵) ↔ 𝐴 ⊆ (𝐴 ·o 𝐵)))
128, 11sylibd 239 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (1o𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
134, 12sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐵𝐴 ⊆ (𝐴 ·o 𝐵)))
1413imp 406 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → 𝐴 ⊆ (𝐴 ·o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wss 3950  c0 4332  Ord word 6382  Oncon0 6383  (class class class)co 7432  1oc1o 8500   ·o comu 8505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-omul 8512
This theorem is referenced by:  om00  8614  cantnflem3  9732  cantnflem4  9733  cnfcomlem  9740  omge1  43315  cantnftermord  43338  naddwordnexlem4  43419
  Copyright terms: Public domain W3C validator