MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0m1 Structured version   Visualization version   GIF version

Theorem oe0m1 8148
Description: Ordinal exponentiation with zero mantissa and nonzero exponent. Proposition 8.31(2) of [TakeutiZaring] p. 67 and its converse. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
oe0m1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅))

Proof of Theorem oe0m1
StepHypRef Expression
1 eloni 6203 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordgt0ge1 8124 . . 3 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
31, 2syl 17 . 2 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o𝐴))
4 oe0m 8145 . . . 4 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
54eqeq1d 2825 . . 3 (𝐴 ∈ On → ((∅ ↑o 𝐴) = ∅ ↔ (1o𝐴) = ∅))
6 ssdif0 4325 . . 3 (1o𝐴 ↔ (1o𝐴) = ∅)
75, 6syl6rbbr 292 . 2 (𝐴 ∈ On → (1o𝐴 ↔ (∅ ↑o 𝐴) = ∅))
83, 7bitrd 281 1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  cdif 3935  wss 3938  c0 4293  Ord word 6192  Oncon0 6193  (class class class)co 7158  1oc1o 8097  o coe 8103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-suc 6199  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oexp 8110
This theorem is referenced by:  oev2  8150  oesuclem  8152  oecl  8164  oewordri  8220  oelim2  8223  oeoa  8225  oeoe  8227  cantnf  9158
  Copyright terms: Public domain W3C validator