| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oe0m1 | Structured version Visualization version GIF version | ||
| Description: Ordinal exponentiation with zero base and nonzero exponent. Proposition 8.31(2) of [TakeutiZaring] p. 67 and its converse. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| oe0m1 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6373 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordgt0ge1 8513 | . . 3 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| 4 | ssdif0 4346 | . . 3 ⊢ (1o ⊆ 𝐴 ↔ (1o ∖ 𝐴) = ∅) | |
| 5 | oe0m 8538 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) | |
| 6 | 5 | eqeq1d 2736 | . . 3 ⊢ (𝐴 ∈ On → ((∅ ↑o 𝐴) = ∅ ↔ (1o ∖ 𝐴) = ∅)) |
| 7 | 4, 6 | bitr4id 290 | . 2 ⊢ (𝐴 ∈ On → (1o ⊆ 𝐴 ↔ (∅ ↑o 𝐴) = ∅)) |
| 8 | 3, 7 | bitrd 279 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∖ cdif 3928 ⊆ wss 3931 ∅c0 4313 Ord word 6362 Oncon0 6363 (class class class)co 7413 1oc1o 8481 ↑o coe 8487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oexp 8494 |
| This theorem is referenced by: oev2 8543 oesuclem 8545 oecl 8557 oewordri 8612 oelim2 8615 oeoa 8617 oeoe 8619 cantnf 9715 oe0suclim 43267 |
| Copyright terms: Public domain | W3C validator |