![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oe0m1 | Structured version Visualization version GIF version |
Description: Ordinal exponentiation with zero mantissa and nonzero exponent. Proposition 8.31(2) of [TakeutiZaring] p. 67 and its converse. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
oe0m1 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑𝑜 𝐴) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 5951 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordgt0ge1 7817 | . . 3 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1𝑜 ⊆ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1𝑜 ⊆ 𝐴)) |
4 | oe0m 7838 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ↑𝑜 𝐴) = (1𝑜 ∖ 𝐴)) | |
5 | 4 | eqeq1d 2801 | . . 3 ⊢ (𝐴 ∈ On → ((∅ ↑𝑜 𝐴) = ∅ ↔ (1𝑜 ∖ 𝐴) = ∅)) |
6 | ssdif0 4142 | . . 3 ⊢ (1𝑜 ⊆ 𝐴 ↔ (1𝑜 ∖ 𝐴) = ∅) | |
7 | 5, 6 | syl6rbbr 282 | . 2 ⊢ (𝐴 ∈ On → (1𝑜 ⊆ 𝐴 ↔ (∅ ↑𝑜 𝐴) = ∅)) |
8 | 3, 7 | bitrd 271 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑𝑜 𝐴) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ∖ cdif 3766 ⊆ wss 3769 ∅c0 4115 Ord word 5940 Oncon0 5941 (class class class)co 6878 1𝑜c1o 7792 ↑𝑜 coe 7798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-suc 5947 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oexp 7805 |
This theorem is referenced by: oev2 7843 oesuclem 7845 oecl 7857 oewordri 7912 oelim2 7915 oeoa 7917 oeoe 7919 cantnf 8840 |
Copyright terms: Public domain | W3C validator |