MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0m1 Structured version   Visualization version   GIF version

Theorem oe0m1 8520
Description: Ordinal exponentiation with zero base and nonzero exponent. Proposition 8.31(2) of [TakeutiZaring] p. 67 and its converse. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
oe0m1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅))

Proof of Theorem oe0m1
StepHypRef Expression
1 eloni 6374 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordgt0ge1 8492 . . 3 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
31, 2syl 17 . 2 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o𝐴))
4 ssdif0 4363 . . 3 (1o𝐴 ↔ (1o𝐴) = ∅)
5 oe0m 8517 . . . 4 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
65eqeq1d 2734 . . 3 (𝐴 ∈ On → ((∅ ↑o 𝐴) = ∅ ↔ (1o𝐴) = ∅))
74, 6bitr4id 289 . 2 (𝐴 ∈ On → (1o𝐴 ↔ (∅ ↑o 𝐴) = ∅))
83, 7bitrd 278 1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  cdif 3945  wss 3948  c0 4322  Ord word 6363  Oncon0 6364  (class class class)co 7408  1oc1o 8458  o coe 8464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oexp 8471
This theorem is referenced by:  oev2  8522  oesuclem  8524  oecl  8536  oewordri  8591  oelim2  8594  oeoa  8596  oeoe  8598  cantnf  9687  oe0suclim  42017
  Copyright terms: Public domain W3C validator