MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0m1 Structured version   Visualization version   GIF version

Theorem oe0m1 8431
Description: Ordinal exponentiation with zero base and nonzero exponent. Proposition 8.31(2) of [TakeutiZaring] p. 67 and its converse. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
oe0m1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅))

Proof of Theorem oe0m1
StepHypRef Expression
1 eloni 6312 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordgt0ge1 8403 . . 3 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
31, 2syl 17 . 2 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o𝐴))
4 ssdif0 4314 . . 3 (1o𝐴 ↔ (1o𝐴) = ∅)
5 oe0m 8428 . . . 4 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
65eqeq1d 2732 . . 3 (𝐴 ∈ On → ((∅ ↑o 𝐴) = ∅ ↔ (1o𝐴) = ∅))
74, 6bitr4id 290 . 2 (𝐴 ∈ On → (1o𝐴 ↔ (∅ ↑o 𝐴) = ∅))
83, 7bitrd 279 1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2110  cdif 3897  wss 3900  c0 4281  Ord word 6301  Oncon0 6302  (class class class)co 7341  1oc1o 8373  o coe 8379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-suc 6308  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oexp 8386
This theorem is referenced by:  oev2  8433  oesuclem  8435  oecl  8447  oewordri  8502  oelim2  8505  oeoa  8507  oeoe  8509  cantnf  9578  oe0suclim  43289
  Copyright terms: Public domain W3C validator