MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0m1 Structured version   Visualization version   GIF version

Theorem oe0m1 8313
Description: Ordinal exponentiation with zero base and nonzero exponent. Proposition 8.31(2) of [TakeutiZaring] p. 67 and its converse. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
oe0m1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅))

Proof of Theorem oe0m1
StepHypRef Expression
1 eloni 6261 . . 3 (𝐴 ∈ On → Ord 𝐴)
2 ordgt0ge1 8289 . . 3 (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o𝐴))
31, 2syl 17 . 2 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o𝐴))
4 ssdif0 4294 . . 3 (1o𝐴 ↔ (1o𝐴) = ∅)
5 oe0m 8310 . . . 4 (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o𝐴))
65eqeq1d 2740 . . 3 (𝐴 ∈ On → ((∅ ↑o 𝐴) = ∅ ↔ (1o𝐴) = ∅))
74, 6bitr4id 289 . 2 (𝐴 ∈ On → (1o𝐴 ↔ (∅ ↑o 𝐴) = ∅))
83, 7bitrd 278 1 (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  cdif 3880  wss 3883  c0 4253  Ord word 6250  Oncon0 6251  (class class class)co 7255  1oc1o 8260  o coe 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oexp 8273
This theorem is referenced by:  oev2  8315  oesuclem  8317  oecl  8329  oewordri  8385  oelim2  8388  oeoa  8390  oeoe  8392  cantnf  9381
  Copyright terms: Public domain W3C validator