| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oe0m1 | Structured version Visualization version GIF version | ||
| Description: Ordinal exponentiation with zero base and nonzero exponent. Proposition 8.31(2) of [TakeutiZaring] p. 67 and its converse. Definition 2.6 of [Schloeder] p. 4. (Contributed by NM, 5-Jan-2005.) |
| Ref | Expression |
|---|---|
| oe0m1 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6312 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordgt0ge1 8403 | . . 3 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
| 4 | ssdif0 4314 | . . 3 ⊢ (1o ⊆ 𝐴 ↔ (1o ∖ 𝐴) = ∅) | |
| 5 | oe0m 8428 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) | |
| 6 | 5 | eqeq1d 2732 | . . 3 ⊢ (𝐴 ∈ On → ((∅ ↑o 𝐴) = ∅ ↔ (1o ∖ 𝐴) = ∅)) |
| 7 | 4, 6 | bitr4id 290 | . 2 ⊢ (𝐴 ∈ On → (1o ⊆ 𝐴 ↔ (∅ ↑o 𝐴) = ∅)) |
| 8 | 3, 7 | bitrd 279 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 ∖ cdif 3897 ⊆ wss 3900 ∅c0 4281 Ord word 6301 Oncon0 6302 (class class class)co 7341 1oc1o 8373 ↑o coe 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oexp 8386 |
| This theorem is referenced by: oev2 8433 oesuclem 8435 oecl 8447 oewordri 8502 oelim2 8505 oeoa 8507 oeoe 8509 cantnf 9578 oe0suclim 43289 |
| Copyright terms: Public domain | W3C validator |