Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oe0m1 | Structured version Visualization version GIF version |
Description: Ordinal exponentiation with zero base and nonzero exponent. Proposition 8.31(2) of [TakeutiZaring] p. 67 and its converse. (Contributed by NM, 5-Jan-2005.) |
Ref | Expression |
---|---|
oe0m1 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6276 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordgt0ge1 8323 | . . 3 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 1o ⊆ 𝐴)) |
4 | ssdif0 4297 | . . 3 ⊢ (1o ⊆ 𝐴 ↔ (1o ∖ 𝐴) = ∅) | |
5 | oe0m 8348 | . . . 4 ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = (1o ∖ 𝐴)) | |
6 | 5 | eqeq1d 2740 | . . 3 ⊢ (𝐴 ∈ On → ((∅ ↑o 𝐴) = ∅ ↔ (1o ∖ 𝐴) = ∅)) |
7 | 4, 6 | bitr4id 290 | . 2 ⊢ (𝐴 ∈ On → (1o ⊆ 𝐴 ↔ (∅ ↑o 𝐴) = ∅)) |
8 | 3, 7 | bitrd 278 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ (∅ ↑o 𝐴) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 Ord word 6265 Oncon0 6266 (class class class)co 7275 1oc1o 8290 ↑o coe 8296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oexp 8303 |
This theorem is referenced by: oev2 8353 oesuclem 8355 oecl 8367 oewordri 8423 oelim2 8426 oeoa 8428 oeoe 8430 cantnf 9451 |
Copyright terms: Public domain | W3C validator |