Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clatp0cl Structured version   Visualization version   GIF version

Theorem clatp0cl 32902
Description: The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.)
Hypotheses
Ref Expression
clatp0cl.b 𝐵 = (Base‘𝑊)
clatp0cl.0 0 = (0.‘𝑊)
Assertion
Ref Expression
clatp0cl (𝑊 ∈ CLat → 0𝐵)

Proof of Theorem clatp0cl
StepHypRef Expression
1 clatp0cl.b . . 3 𝐵 = (Base‘𝑊)
2 eqid 2735 . . 3 (glb‘𝑊) = (glb‘𝑊)
3 clatp0cl.0 . . 3 0 = (0.‘𝑊)
41, 2, 3p0val 18435 . 2 (𝑊 ∈ CLat → 0 = ((glb‘𝑊)‘𝐵))
5 ssid 3981 . . 3 𝐵𝐵
61, 2clatglbcl 18513 . . 3 ((𝑊 ∈ CLat ∧ 𝐵𝐵) → ((glb‘𝑊)‘𝐵) ∈ 𝐵)
75, 6mpan2 691 . 2 (𝑊 ∈ CLat → ((glb‘𝑊)‘𝐵) ∈ 𝐵)
84, 7eqeltrd 2834 1 (𝑊 ∈ CLat → 0𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3926  cfv 6530  Basecbs 17226  glbcglb 18320  0.cp0 18431  CLatccla 18506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-lub 18354  df-glb 18355  df-p0 18433  df-clat 18507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator