Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fisshasheq | Structured version Visualization version GIF version |
Description: A finite set is equal to its subset if they are the same size. (Contributed by BTernaryTau, 3-Oct-2023.) |
Ref | Expression |
---|---|
fisshasheq | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfi 8757 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Fin) | |
2 | 1 | 3adant3 1130 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ∈ Fin) |
3 | hashen 13747 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
4 | 3 | biimp3a 1467 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ≈ 𝐵) |
5 | pm3.2 474 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → (𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵))) | |
6 | 5 | 3ad2ant2 1132 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵)) → (𝐴 ⊆ 𝐵 → (𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵))) |
7 | fisseneq 8748 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) | |
8 | 7 | 3expa 1116 | . . . . . . . . 9 ⊢ (((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
9 | 8 | expcom 418 | . . . . . . . 8 ⊢ (𝐴 ≈ 𝐵 → ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → 𝐴 = 𝐵)) |
10 | 4, 6, 9 | sylsyld 61 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵)) → (𝐴 ⊆ 𝐵 → 𝐴 = 𝐵)) |
11 | 10 | 3expb 1118 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵))) → (𝐴 ⊆ 𝐵 → 𝐴 = 𝐵)) |
12 | 11 | expcom 418 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵)) → (𝐴 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 = 𝐵))) |
13 | 12 | com23 86 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵)) → (𝐴 ⊆ 𝐵 → (𝐴 ∈ Fin → 𝐴 = 𝐵))) |
14 | 13 | 3impia 1115 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∈ Fin → 𝐴 = 𝐵)) |
15 | 14 | 3com23 1124 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (♯‘𝐴) = (♯‘𝐵)) → (𝐴 ∈ Fin → 𝐴 = 𝐵)) |
16 | 2, 15 | mpd 15 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ⊆ wss 3859 class class class wbr 5030 ‘cfv 6333 ≈ cen 8522 Fincfn 8525 ♯chash 13730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-card 9391 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-nn 11665 df-n0 11925 df-z 12011 df-uz 12273 df-hash 13731 |
This theorem is referenced by: cusgredgex 32589 |
Copyright terms: Public domain | W3C validator |