![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fisshasheq | Structured version Visualization version GIF version |
Description: A finite set is equal to its subset if they are the same size. (Contributed by BTernaryTau, 3-Oct-2023.) |
Ref | Expression |
---|---|
fisshasheq | ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfi 9175 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ Fin) | |
2 | 1 | 3adant3 1130 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ∈ Fin) |
3 | hashen 14311 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
4 | 3 | biimp3a 1467 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 ≈ 𝐵) |
5 | pm3.2 468 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → (𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵))) | |
6 | 5 | 3ad2ant2 1132 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵)) → (𝐴 ⊆ 𝐵 → (𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵))) |
7 | fisseneq 9259 | . . . . . . . . . 10 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) | |
8 | 7 | 3expa 1116 | . . . . . . . . 9 ⊢ (((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) |
9 | 8 | expcom 412 | . . . . . . . 8 ⊢ (𝐴 ≈ 𝐵 → ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵) → 𝐴 = 𝐵)) |
10 | 4, 6, 9 | sylsyld 61 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵)) → (𝐴 ⊆ 𝐵 → 𝐴 = 𝐵)) |
11 | 10 | 3expb 1118 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵))) → (𝐴 ⊆ 𝐵 → 𝐴 = 𝐵)) |
12 | 11 | expcom 412 | . . . . 5 ⊢ ((𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵)) → (𝐴 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 = 𝐵))) |
13 | 12 | com23 86 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵)) → (𝐴 ⊆ 𝐵 → (𝐴 ∈ Fin → 𝐴 = 𝐵))) |
14 | 13 | 3impia 1115 | . . 3 ⊢ ((𝐵 ∈ Fin ∧ (♯‘𝐴) = (♯‘𝐵) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∈ Fin → 𝐴 = 𝐵)) |
15 | 14 | 3com23 1124 | . 2 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (♯‘𝐴) = (♯‘𝐵)) → (𝐴 ∈ Fin → 𝐴 = 𝐵)) |
16 | 2, 15 | mpd 15 | 1 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 class class class wbr 5147 ‘cfv 6542 ≈ cen 8938 Fincfn 8941 ♯chash 14294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-hash 14295 |
This theorem is referenced by: cusgredgex 34410 |
Copyright terms: Public domain | W3C validator |