![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephexp2 | Structured version Visualization version GIF version |
Description: An expression equinumerous to 2 to an aleph power. The proof equates the two laws for cardinal exponentiation alephexp1 10576 (which works if the base is less than or equal to the exponent) and infmap 10573 (which works if the exponent is less than or equal to the base). They can be equated only when the base is equal to the exponent, and this is the result. (Contributed by NM, 23-Oct-2004.) |
Ref | Expression |
---|---|
alephexp2 | ⊢ (𝐴 ∈ On → (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephgeom 10079 | . . . 4 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
2 | fvex 6898 | . . . . 5 ⊢ (ℵ‘𝐴) ∈ V | |
3 | ssdomg 8998 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)) |
5 | 1, 4 | sylbi 216 | . . 3 ⊢ (𝐴 ∈ On → ω ≼ (ℵ‘𝐴)) |
6 | domrefg 8985 | . . . 4 ⊢ ((ℵ‘𝐴) ∈ V → (ℵ‘𝐴) ≼ (ℵ‘𝐴)) | |
7 | 2, 6 | ax-mp 5 | . . 3 ⊢ (ℵ‘𝐴) ≼ (ℵ‘𝐴) |
8 | infmap 10573 | . . 3 ⊢ ((ω ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐴)) → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) | |
9 | 5, 7, 8 | sylancl 585 | . 2 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
10 | pm3.2 469 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ∈ On → (𝐴 ∈ On ∧ 𝐴 ∈ On))) | |
11 | 10 | pm2.43i 52 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ∧ 𝐴 ∈ On)) |
12 | ssid 3999 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
13 | alephexp1 10576 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐴 ⊆ 𝐴) → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴))) | |
14 | 11, 12, 13 | sylancl 585 | . . 3 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴))) |
15 | enen1 9119 | . . 3 ⊢ (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴)) → (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))})) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))})) |
17 | 9, 16 | mpbid 231 | 1 ⊢ (𝐴 ∈ On → (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 {cab 2703 Vcvv 3468 ⊆ wss 3943 class class class wbr 5141 Oncon0 6358 ‘cfv 6537 (class class class)co 7405 ωcom 7852 2oc2o 8461 ↑m cmap 8822 ≈ cen 8938 ≼ cdom 8939 ℵcale 9933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-ac2 10460 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-oi 9507 df-har 9554 df-card 9936 df-aleph 9937 df-acn 9939 df-ac 10113 |
This theorem is referenced by: gch-kn 10674 |
Copyright terms: Public domain | W3C validator |