![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephexp2 | Structured version Visualization version GIF version |
Description: An expression equinumerous to 2 to an aleph power. The proof equates the two laws for cardinal exponentiation alephexp1 10571 (which works if the base is less than or equal to the exponent) and infmap 10568 (which works if the exponent is less than or equal to the base). They can be equated only when the base is equal to the exponent, and this is the result. (Contributed by NM, 23-Oct-2004.) |
Ref | Expression |
---|---|
alephexp2 | ⊢ (𝐴 ∈ On → (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephgeom 10074 | . . . 4 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
2 | fvex 6902 | . . . . 5 ⊢ (ℵ‘𝐴) ∈ V | |
3 | ssdomg 8993 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)) |
5 | 1, 4 | sylbi 216 | . . 3 ⊢ (𝐴 ∈ On → ω ≼ (ℵ‘𝐴)) |
6 | domrefg 8980 | . . . 4 ⊢ ((ℵ‘𝐴) ∈ V → (ℵ‘𝐴) ≼ (ℵ‘𝐴)) | |
7 | 2, 6 | ax-mp 5 | . . 3 ⊢ (ℵ‘𝐴) ≼ (ℵ‘𝐴) |
8 | infmap 10568 | . . 3 ⊢ ((ω ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐴)) → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) | |
9 | 5, 7, 8 | sylancl 587 | . 2 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
10 | pm3.2 471 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ∈ On → (𝐴 ∈ On ∧ 𝐴 ∈ On))) | |
11 | 10 | pm2.43i 52 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ∧ 𝐴 ∈ On)) |
12 | ssid 4004 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
13 | alephexp1 10571 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐴 ⊆ 𝐴) → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴))) | |
14 | 11, 12, 13 | sylancl 587 | . . 3 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴))) |
15 | enen1 9114 | . . 3 ⊢ (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴)) → (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))})) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))})) |
17 | 9, 16 | mpbid 231 | 1 ⊢ (𝐴 ∈ On → (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 {cab 2710 Vcvv 3475 ⊆ wss 3948 class class class wbr 5148 Oncon0 6362 ‘cfv 6541 (class class class)co 7406 ωcom 7852 2oc2o 8457 ↑m cmap 8817 ≈ cen 8933 ≼ cdom 8934 ℵcale 9928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-inf2 9633 ax-ac2 10455 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-2o 8464 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-oi 9502 df-har 9549 df-card 9931 df-aleph 9932 df-acn 9934 df-ac 10108 |
This theorem is referenced by: gch-kn 10669 |
Copyright terms: Public domain | W3C validator |