| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephexp2 | Structured version Visualization version GIF version | ||
| Description: An expression equinumerous to 2 to an aleph power. The proof equates the two laws for cardinal exponentiation alephexp1 10473 (which works if the base is less than or equal to the exponent) and infmap 10470 (which works if the exponent is less than or equal to the base). They can be equated only when the base is equal to the exponent, and this is the result. (Contributed by NM, 23-Oct-2004.) |
| Ref | Expression |
|---|---|
| alephexp2 | ⊢ (𝐴 ∈ On → (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephgeom 9976 | . . . 4 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
| 2 | fvex 6835 | . . . . 5 ⊢ (ℵ‘𝐴) ∈ V | |
| 3 | ssdomg 8925 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)) |
| 5 | 1, 4 | sylbi 217 | . . 3 ⊢ (𝐴 ∈ On → ω ≼ (ℵ‘𝐴)) |
| 6 | domrefg 8912 | . . . 4 ⊢ ((ℵ‘𝐴) ∈ V → (ℵ‘𝐴) ≼ (ℵ‘𝐴)) | |
| 7 | 2, 6 | ax-mp 5 | . . 3 ⊢ (ℵ‘𝐴) ≼ (ℵ‘𝐴) |
| 8 | infmap 10470 | . . 3 ⊢ ((ω ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐴)) → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) | |
| 9 | 5, 7, 8 | sylancl 586 | . 2 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
| 10 | pm3.2 469 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ∈ On → (𝐴 ∈ On ∧ 𝐴 ∈ On))) | |
| 11 | 10 | pm2.43i 52 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ∧ 𝐴 ∈ On)) |
| 12 | ssid 3958 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
| 13 | alephexp1 10473 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐴 ⊆ 𝐴) → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴))) | |
| 14 | 11, 12, 13 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴))) |
| 15 | enen1 9034 | . . 3 ⊢ (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴)) → (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))})) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))})) |
| 17 | 9, 16 | mpbid 232 | 1 ⊢ (𝐴 ∈ On → (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 {cab 2707 Vcvv 3436 ⊆ wss 3903 class class class wbr 5092 Oncon0 6307 ‘cfv 6482 (class class class)co 7349 ωcom 7799 2oc2o 8382 ↑m cmap 8753 ≈ cen 8869 ≼ cdom 8870 ℵcale 9832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-ac2 10357 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-har 9449 df-card 9835 df-aleph 9836 df-acn 9838 df-ac 10010 |
| This theorem is referenced by: gch-kn 10571 |
| Copyright terms: Public domain | W3C validator |