| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephexp2 | Structured version Visualization version GIF version | ||
| Description: An expression equinumerous to 2 to an aleph power. The proof equates the two laws for cardinal exponentiation alephexp1 10470 (which works if the base is less than or equal to the exponent) and infmap 10467 (which works if the exponent is less than or equal to the base). They can be equated only when the base is equal to the exponent, and this is the result. (Contributed by NM, 23-Oct-2004.) |
| Ref | Expression |
|---|---|
| alephexp2 | ⊢ (𝐴 ∈ On → (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephgeom 9973 | . . . 4 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
| 2 | fvex 6835 | . . . . 5 ⊢ (ℵ‘𝐴) ∈ V | |
| 3 | ssdomg 8922 | . . . . 5 ⊢ ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)) |
| 5 | 1, 4 | sylbi 217 | . . 3 ⊢ (𝐴 ∈ On → ω ≼ (ℵ‘𝐴)) |
| 6 | domrefg 8909 | . . . 4 ⊢ ((ℵ‘𝐴) ∈ V → (ℵ‘𝐴) ≼ (ℵ‘𝐴)) | |
| 7 | 2, 6 | ax-mp 5 | . . 3 ⊢ (ℵ‘𝐴) ≼ (ℵ‘𝐴) |
| 8 | infmap 10467 | . . 3 ⊢ ((ω ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐴)) → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) | |
| 9 | 5, 7, 8 | sylancl 586 | . 2 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
| 10 | pm3.2 469 | . . . . 5 ⊢ (𝐴 ∈ On → (𝐴 ∈ On → (𝐴 ∈ On ∧ 𝐴 ∈ On))) | |
| 11 | 10 | pm2.43i 52 | . . . 4 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ∧ 𝐴 ∈ On)) |
| 12 | ssid 3952 | . . . 4 ⊢ 𝐴 ⊆ 𝐴 | |
| 13 | alephexp1 10470 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐴 ⊆ 𝐴) → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴))) | |
| 14 | 11, 12, 13 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ On → ((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴))) |
| 15 | enen1 9030 | . . 3 ⊢ (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ (2o ↑m (ℵ‘𝐴)) → (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))})) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ∈ On → (((ℵ‘𝐴) ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))})) |
| 17 | 9, 16 | mpbid 232 | 1 ⊢ (𝐴 ∈ On → (2o ↑m (ℵ‘𝐴)) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 {cab 2709 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 Oncon0 6306 ‘cfv 6481 (class class class)co 7346 ωcom 7796 2oc2o 8379 ↑m cmap 8750 ≈ cen 8866 ≼ cdom 8867 ℵcale 9829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-har 9443 df-card 9832 df-aleph 9833 df-acn 9835 df-ac 10007 |
| This theorem is referenced by: gch-kn 10568 |
| Copyright terms: Public domain | W3C validator |