Step | Hyp | Ref
| Expression |
1 | | ovexd 7342 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝑋𝑦) ∈ V) |
2 | | suppofssd.3 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
3 | | suppofssd.4 |
. . 3
⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
4 | | suppofssd.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
5 | | inidm 4158 |
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
6 | 1, 2, 3, 4, 4, 5 | off 7583 |
. 2
⊢ (𝜑 → (𝐹 ∘f 𝑋𝐺):𝐴⟶V) |
7 | | eldif 3902 |
. . . 4
⊢ (𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))) |
8 | | ioran 982 |
. . . . . 6
⊢ (¬
(𝑘 ∈ (𝐹 supp 𝑍) ∨ 𝑘 ∈ (𝐺 supp 𝑍)) ↔ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))) |
9 | | elun 4089 |
. . . . . 6
⊢ (𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ↔ (𝑘 ∈ (𝐹 supp 𝑍) ∨ 𝑘 ∈ (𝐺 supp 𝑍))) |
10 | 8, 9 | xchnxbir 333 |
. . . . 5
⊢ (¬
𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ↔ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))) |
11 | 10 | anbi2i 624 |
. . . 4
⊢ ((𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘 ∈ 𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) |
12 | 7, 11 | bitri 275 |
. . 3
⊢ (𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘 ∈ 𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) |
13 | 2 | ffnd 6631 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 Fn 𝐴) |
14 | | suppofssd.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
15 | | elsuppfn 8018 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝐵) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
16 | 13, 4, 14, 15 | syl3anc 1371 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
17 | 16 | notbid 318 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝑘 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
18 | 17 | biimpd 228 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝑘 ∈ (𝐹 supp 𝑍) → ¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
19 | 3 | ffnd 6631 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 Fn 𝐴) |
20 | | elsuppfn 8018 |
. . . . . . . . . 10
⊢ ((𝐺 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝐵) → (𝑘 ∈ (𝐺 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) |
21 | 19, 4, 14, 20 | syl3anc 1371 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ (𝐺 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) |
22 | 21 | notbid 318 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑍) ↔ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) |
23 | 22 | biimpd 228 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑍) → ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) |
24 | 18, 23 | anim12d 610 |
. . . . . 6
⊢ (𝜑 → ((¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)) → (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍)))) |
25 | 24 | anim2d 613 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))) → (𝑘 ∈ 𝐴 ∧ (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))))) |
26 | 25 | imp 408 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) → (𝑘 ∈ 𝐴 ∧ (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍)))) |
27 | | pm3.2 471 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐴 → ((𝐹‘𝑘) ≠ 𝑍 → (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
28 | 27 | necon1bd 2959 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐴 → (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) → (𝐹‘𝑘) = 𝑍)) |
29 | | pm3.2 471 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐴 → ((𝐺‘𝑘) ≠ 𝑍 → (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) |
30 | 29 | necon1bd 2959 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐴 → (¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍) → (𝐺‘𝑘) = 𝑍)) |
31 | 28, 30 | anim12d 610 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 → ((¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍)) → ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) |
32 | 31 | imdistani 570 |
. . . . 5
⊢ ((𝑘 ∈ 𝐴 ∧ (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) → (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) |
33 | 13 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → 𝐹 Fn 𝐴) |
34 | 19 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → 𝐺 Fn 𝐴) |
35 | 4 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → 𝐴 ∈ 𝑉) |
36 | | simprl 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → 𝑘 ∈ 𝐴) |
37 | | fnfvof 7582 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑘 ∈ 𝐴)) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = ((𝐹‘𝑘)𝑋(𝐺‘𝑘))) |
38 | 33, 34, 35, 36, 37 | syl22anc 837 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = ((𝐹‘𝑘)𝑋(𝐺‘𝑘))) |
39 | | oveq12 7316 |
. . . . . . 7
⊢ (((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍) → ((𝐹‘𝑘)𝑋(𝐺‘𝑘)) = (𝑍𝑋𝑍)) |
40 | 39 | ad2antll 727 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → ((𝐹‘𝑘)𝑋(𝐺‘𝑘)) = (𝑍𝑋𝑍)) |
41 | | suppofssd.5 |
. . . . . . 7
⊢ (𝜑 → (𝑍𝑋𝑍) = 𝑍) |
42 | 41 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → (𝑍𝑋𝑍) = 𝑍) |
43 | 38, 40, 42 | 3eqtrd 2780 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = 𝑍) |
44 | 32, 43 | sylan2 594 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍)))) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = 𝑍) |
45 | 26, 44 | syldan 592 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = 𝑍) |
46 | 12, 45 | sylan2b 595 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = 𝑍) |
47 | 6, 46 | suppss 8041 |
1
⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) |