| Step | Hyp | Ref
| Expression |
| 1 | | ovexd 7466 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝑋𝑦) ∈ V) |
| 2 | | suppofssd.3 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 3 | | suppofssd.4 |
. . 3
⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| 4 | | suppofssd.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 5 | | inidm 4227 |
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 6 | 1, 2, 3, 4, 4, 5 | off 7715 |
. 2
⊢ (𝜑 → (𝐹 ∘f 𝑋𝐺):𝐴⟶V) |
| 7 | | eldif 3961 |
. . . 4
⊢ (𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))) |
| 8 | | ioran 986 |
. . . . . 6
⊢ (¬
(𝑘 ∈ (𝐹 supp 𝑍) ∨ 𝑘 ∈ (𝐺 supp 𝑍)) ↔ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))) |
| 9 | | elun 4153 |
. . . . . 6
⊢ (𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ↔ (𝑘 ∈ (𝐹 supp 𝑍) ∨ 𝑘 ∈ (𝐺 supp 𝑍))) |
| 10 | 8, 9 | xchnxbir 333 |
. . . . 5
⊢ (¬
𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ↔ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))) |
| 11 | 10 | anbi2i 623 |
. . . 4
⊢ ((𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘 ∈ 𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) |
| 12 | 7, 11 | bitri 275 |
. . 3
⊢ (𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘 ∈ 𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) |
| 13 | 2 | ffnd 6737 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 14 | | suppofssd.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| 15 | | elsuppfn 8195 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝐵) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
| 16 | 13, 4, 14, 15 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
| 17 | 16 | notbid 318 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝑘 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
| 18 | 17 | biimpd 229 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝑘 ∈ (𝐹 supp 𝑍) → ¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
| 19 | 3 | ffnd 6737 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 Fn 𝐴) |
| 20 | | elsuppfn 8195 |
. . . . . . . . . 10
⊢ ((𝐺 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝑍 ∈ 𝐵) → (𝑘 ∈ (𝐺 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) |
| 21 | 19, 4, 14, 20 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ (𝐺 supp 𝑍) ↔ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) |
| 22 | 21 | notbid 318 |
. . . . . . . 8
⊢ (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑍) ↔ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) |
| 23 | 22 | biimpd 229 |
. . . . . . 7
⊢ (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑍) → ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) |
| 24 | 18, 23 | anim12d 609 |
. . . . . 6
⊢ (𝜑 → ((¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)) → (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍)))) |
| 25 | 24 | anim2d 612 |
. . . . 5
⊢ (𝜑 → ((𝑘 ∈ 𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))) → (𝑘 ∈ 𝐴 ∧ (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))))) |
| 26 | 25 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) → (𝑘 ∈ 𝐴 ∧ (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍)))) |
| 27 | | pm3.2 469 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐴 → ((𝐹‘𝑘) ≠ 𝑍 → (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍))) |
| 28 | 27 | necon1bd 2958 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐴 → (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) → (𝐹‘𝑘) = 𝑍)) |
| 29 | | pm3.2 469 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐴 → ((𝐺‘𝑘) ≠ 𝑍 → (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) |
| 30 | 29 | necon1bd 2958 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐴 → (¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍) → (𝐺‘𝑘) = 𝑍)) |
| 31 | 28, 30 | anim12d 609 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 → ((¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍)) → ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) |
| 32 | 31 | imdistani 568 |
. . . . 5
⊢ ((𝑘 ∈ 𝐴 ∧ (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍))) → (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) |
| 33 | 13 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → 𝐹 Fn 𝐴) |
| 34 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → 𝐺 Fn 𝐴) |
| 35 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → 𝐴 ∈ 𝑉) |
| 36 | | simprl 771 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → 𝑘 ∈ 𝐴) |
| 37 | | fnfvof 7714 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑘 ∈ 𝐴)) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = ((𝐹‘𝑘)𝑋(𝐺‘𝑘))) |
| 38 | 33, 34, 35, 36, 37 | syl22anc 839 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = ((𝐹‘𝑘)𝑋(𝐺‘𝑘))) |
| 39 | | oveq12 7440 |
. . . . . . 7
⊢ (((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍) → ((𝐹‘𝑘)𝑋(𝐺‘𝑘)) = (𝑍𝑋𝑍)) |
| 40 | 39 | ad2antll 729 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → ((𝐹‘𝑘)𝑋(𝐺‘𝑘)) = (𝑍𝑋𝑍)) |
| 41 | | suppofssd.5 |
. . . . . . 7
⊢ (𝜑 → (𝑍𝑋𝑍) = 𝑍) |
| 42 | 41 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → (𝑍𝑋𝑍) = 𝑍) |
| 43 | 38, 40, 42 | 3eqtrd 2781 |
. . . . 5
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ ((𝐹‘𝑘) = 𝑍 ∧ (𝐺‘𝑘) = 𝑍))) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = 𝑍) |
| 44 | 32, 43 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ (¬ (𝑘 ∈ 𝐴 ∧ (𝐹‘𝑘) ≠ 𝑍) ∧ ¬ (𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) ≠ 𝑍)))) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = 𝑍) |
| 45 | 26, 44 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = 𝑍) |
| 46 | 12, 45 | sylan2b 594 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))) → ((𝐹 ∘f 𝑋𝐺)‘𝑘) = 𝑍) |
| 47 | 6, 46 | suppss 8219 |
1
⊢ (𝜑 → ((𝐹 ∘f 𝑋𝐺) supp 𝑍) ⊆ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) |