MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppofssd Structured version   Visualization version   GIF version

Theorem suppofssd 7867
Description: Condition for the support of a function operation to be a subset of the union of the supports of the left and right function terms. (Contributed by Steven Nguyen, 28-Aug-2023.)
Hypotheses
Ref Expression
suppofssd.1 (𝜑𝐴𝑉)
suppofssd.2 (𝜑𝑍𝐵)
suppofssd.3 (𝜑𝐹:𝐴𝐵)
suppofssd.4 (𝜑𝐺:𝐴𝐵)
suppofssd.5 (𝜑 → (𝑍𝑋𝑍) = 𝑍)
Assertion
Ref Expression
suppofssd (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))

Proof of Theorem suppofssd
Dummy variables 𝑥 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7191 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑋𝑦) ∈ V)
2 suppofssd.3 . . 3 (𝜑𝐹:𝐴𝐵)
3 suppofssd.4 . . 3 (𝜑𝐺:𝐴𝐵)
4 suppofssd.1 . . 3 (𝜑𝐴𝑉)
5 inidm 4195 . . 3 (𝐴𝐴) = 𝐴
61, 2, 3, 4, 4, 5off 7424 . 2 (𝜑 → (𝐹f 𝑋𝐺):𝐴⟶V)
7 eldif 3946 . . . 4 (𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘𝐴 ∧ ¬ 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))))
8 ioran 980 . . . . . 6 (¬ (𝑘 ∈ (𝐹 supp 𝑍) ∨ 𝑘 ∈ (𝐺 supp 𝑍)) ↔ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))
9 elun 4125 . . . . . 6 (𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ↔ (𝑘 ∈ (𝐹 supp 𝑍) ∨ 𝑘 ∈ (𝐺 supp 𝑍)))
108, 9xchnxbir 335 . . . . 5 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ↔ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))
1110anbi2i 624 . . . 4 ((𝑘𝐴 ∧ ¬ 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))))
127, 11bitri 277 . . 3 (𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))))
132ffnd 6515 . . . . . . . . . 10 (𝜑𝐹 Fn 𝐴)
14 suppofssd.2 . . . . . . . . . 10 (𝜑𝑍𝐵)
15 elsuppfn 7838 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝐵) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
1613, 4, 14, 15syl3anc 1367 . . . . . . . . 9 (𝜑 → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
1716notbid 320 . . . . . . . 8 (𝜑 → (¬ 𝑘 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
1817biimpd 231 . . . . . . 7 (𝜑 → (¬ 𝑘 ∈ (𝐹 supp 𝑍) → ¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
193ffnd 6515 . . . . . . . . . 10 (𝜑𝐺 Fn 𝐴)
20 elsuppfn 7838 . . . . . . . . . 10 ((𝐺 Fn 𝐴𝐴𝑉𝑍𝐵) → (𝑘 ∈ (𝐺 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2119, 4, 14, 20syl3anc 1367 . . . . . . . . 9 (𝜑 → (𝑘 ∈ (𝐺 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2221notbid 320 . . . . . . . 8 (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑍) ↔ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2322biimpd 231 . . . . . . 7 (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑍) → ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2418, 23anim12d 610 . . . . . 6 (𝜑 → ((¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)) → (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍))))
2524anim2d 613 . . . . 5 (𝜑 → ((𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))) → (𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))))
2625imp 409 . . . 4 ((𝜑 ∧ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) → (𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍))))
27 pm3.2 472 . . . . . . . 8 (𝑘𝐴 → ((𝐹𝑘) ≠ 𝑍 → (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
2827necon1bd 3034 . . . . . . 7 (𝑘𝐴 → (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) → (𝐹𝑘) = 𝑍))
29 pm3.2 472 . . . . . . . 8 (𝑘𝐴 → ((𝐺𝑘) ≠ 𝑍 → (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
3029necon1bd 3034 . . . . . . 7 (𝑘𝐴 → (¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍) → (𝐺𝑘) = 𝑍))
3128, 30anim12d 610 . . . . . 6 (𝑘𝐴 → ((¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)) → ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍)))
3231imdistani 571 . . . . 5 ((𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍))) → (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍)))
3313adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝐹 Fn 𝐴)
3419adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝐺 Fn 𝐴)
354adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝐴𝑉)
36 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝑘𝐴)
37 fnfvof 7423 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑘𝐴)) → ((𝐹f 𝑋𝐺)‘𝑘) = ((𝐹𝑘)𝑋(𝐺𝑘)))
3833, 34, 35, 36, 37syl22anc 836 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → ((𝐹f 𝑋𝐺)‘𝑘) = ((𝐹𝑘)𝑋(𝐺𝑘)))
39 oveq12 7165 . . . . . . 7 (((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍) → ((𝐹𝑘)𝑋(𝐺𝑘)) = (𝑍𝑋𝑍))
4039ad2antll 727 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → ((𝐹𝑘)𝑋(𝐺𝑘)) = (𝑍𝑋𝑍))
41 suppofssd.5 . . . . . . 7 (𝜑 → (𝑍𝑋𝑍) = 𝑍)
4241adantr 483 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → (𝑍𝑋𝑍) = 𝑍)
4338, 40, 423eqtrd 2860 . . . . 5 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
4432, 43sylan2 594 . . . 4 ((𝜑 ∧ (𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
4526, 44syldan 593 . . 3 ((𝜑 ∧ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
4612, 45sylan2b 595 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
476, 46suppss 7860 1 (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  cdif 3933  cun 3934  wss 3936   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407   supp csupp 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-supp 7831
This theorem is referenced by:  mhpaddcl  20338
  Copyright terms: Public domain W3C validator