MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppofssd Structured version   Visualization version   GIF version

Theorem suppofssd 8190
Description: Condition for the support of a function operation to be a subset of the union of the supports of the left and right function terms. (Contributed by Steven Nguyen, 28-Aug-2023.)
Hypotheses
Ref Expression
suppofssd.1 (𝜑𝐴𝑉)
suppofssd.2 (𝜑𝑍𝐵)
suppofssd.3 (𝜑𝐹:𝐴𝐵)
suppofssd.4 (𝜑𝐺:𝐴𝐵)
suppofssd.5 (𝜑 → (𝑍𝑋𝑍) = 𝑍)
Assertion
Ref Expression
suppofssd (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))

Proof of Theorem suppofssd
Dummy variables 𝑥 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7446 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑋𝑦) ∈ V)
2 suppofssd.3 . . 3 (𝜑𝐹:𝐴𝐵)
3 suppofssd.4 . . 3 (𝜑𝐺:𝐴𝐵)
4 suppofssd.1 . . 3 (𝜑𝐴𝑉)
5 inidm 4217 . . 3 (𝐴𝐴) = 𝐴
61, 2, 3, 4, 4, 5off 7690 . 2 (𝜑 → (𝐹f 𝑋𝐺):𝐴⟶V)
7 eldif 3957 . . . 4 (𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘𝐴 ∧ ¬ 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))))
8 ioran 980 . . . . . 6 (¬ (𝑘 ∈ (𝐹 supp 𝑍) ∨ 𝑘 ∈ (𝐺 supp 𝑍)) ↔ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))
9 elun 4147 . . . . . 6 (𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ↔ (𝑘 ∈ (𝐹 supp 𝑍) ∨ 𝑘 ∈ (𝐺 supp 𝑍)))
108, 9xchnxbir 332 . . . . 5 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ↔ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))
1110anbi2i 621 . . . 4 ((𝑘𝐴 ∧ ¬ 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))))
127, 11bitri 274 . . 3 (𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))))
132ffnd 6717 . . . . . . . . . 10 (𝜑𝐹 Fn 𝐴)
14 suppofssd.2 . . . . . . . . . 10 (𝜑𝑍𝐵)
15 elsuppfn 8158 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝐵) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
1613, 4, 14, 15syl3anc 1369 . . . . . . . . 9 (𝜑 → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
1716notbid 317 . . . . . . . 8 (𝜑 → (¬ 𝑘 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
1817biimpd 228 . . . . . . 7 (𝜑 → (¬ 𝑘 ∈ (𝐹 supp 𝑍) → ¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
193ffnd 6717 . . . . . . . . . 10 (𝜑𝐺 Fn 𝐴)
20 elsuppfn 8158 . . . . . . . . . 10 ((𝐺 Fn 𝐴𝐴𝑉𝑍𝐵) → (𝑘 ∈ (𝐺 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2119, 4, 14, 20syl3anc 1369 . . . . . . . . 9 (𝜑 → (𝑘 ∈ (𝐺 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2221notbid 317 . . . . . . . 8 (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑍) ↔ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2322biimpd 228 . . . . . . 7 (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑍) → ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2418, 23anim12d 607 . . . . . 6 (𝜑 → ((¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)) → (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍))))
2524anim2d 610 . . . . 5 (𝜑 → ((𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))) → (𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))))
2625imp 405 . . . 4 ((𝜑 ∧ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) → (𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍))))
27 pm3.2 468 . . . . . . . 8 (𝑘𝐴 → ((𝐹𝑘) ≠ 𝑍 → (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
2827necon1bd 2956 . . . . . . 7 (𝑘𝐴 → (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) → (𝐹𝑘) = 𝑍))
29 pm3.2 468 . . . . . . . 8 (𝑘𝐴 → ((𝐺𝑘) ≠ 𝑍 → (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
3029necon1bd 2956 . . . . . . 7 (𝑘𝐴 → (¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍) → (𝐺𝑘) = 𝑍))
3128, 30anim12d 607 . . . . . 6 (𝑘𝐴 → ((¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)) → ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍)))
3231imdistani 567 . . . . 5 ((𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍))) → (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍)))
3313adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝐹 Fn 𝐴)
3419adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝐺 Fn 𝐴)
354adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝐴𝑉)
36 simprl 767 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝑘𝐴)
37 fnfvof 7689 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑘𝐴)) → ((𝐹f 𝑋𝐺)‘𝑘) = ((𝐹𝑘)𝑋(𝐺𝑘)))
3833, 34, 35, 36, 37syl22anc 835 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → ((𝐹f 𝑋𝐺)‘𝑘) = ((𝐹𝑘)𝑋(𝐺𝑘)))
39 oveq12 7420 . . . . . . 7 (((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍) → ((𝐹𝑘)𝑋(𝐺𝑘)) = (𝑍𝑋𝑍))
4039ad2antll 725 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → ((𝐹𝑘)𝑋(𝐺𝑘)) = (𝑍𝑋𝑍))
41 suppofssd.5 . . . . . . 7 (𝜑 → (𝑍𝑋𝑍) = 𝑍)
4241adantr 479 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → (𝑍𝑋𝑍) = 𝑍)
4338, 40, 423eqtrd 2774 . . . . 5 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
4432, 43sylan2 591 . . . 4 ((𝜑 ∧ (𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
4526, 44syldan 589 . . 3 ((𝜑 ∧ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
4612, 45sylan2b 592 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
476, 46suppss 8181 1 (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843   = wceq 1539  wcel 2104  wne 2938  Vcvv 3472  cdif 3944  cun 3945  wss 3947   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7411  f cof 7670   supp csupp 8148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-supp 8149
This theorem is referenced by:  psrbagaddcl  21700  mhpmulcl  21911  mhpaddcl  21913  naddcnff  42414
  Copyright terms: Public domain W3C validator