MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppofssd Structured version   Visualization version   GIF version

Theorem suppofssd 8202
Description: Condition for the support of a function operation to be a subset of the union of the supports of the left and right function terms. (Contributed by Steven Nguyen, 28-Aug-2023.)
Hypotheses
Ref Expression
suppofssd.1 (𝜑𝐴𝑉)
suppofssd.2 (𝜑𝑍𝐵)
suppofssd.3 (𝜑𝐹:𝐴𝐵)
suppofssd.4 (𝜑𝐺:𝐴𝐵)
suppofssd.5 (𝜑 → (𝑍𝑋𝑍) = 𝑍)
Assertion
Ref Expression
suppofssd (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))

Proof of Theorem suppofssd
Dummy variables 𝑥 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7440 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑋𝑦) ∈ V)
2 suppofssd.3 . . 3 (𝜑𝐹:𝐴𝐵)
3 suppofssd.4 . . 3 (𝜑𝐺:𝐴𝐵)
4 suppofssd.1 . . 3 (𝜑𝐴𝑉)
5 inidm 4202 . . 3 (𝐴𝐴) = 𝐴
61, 2, 3, 4, 4, 5off 7689 . 2 (𝜑 → (𝐹f 𝑋𝐺):𝐴⟶V)
7 eldif 3936 . . . 4 (𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘𝐴 ∧ ¬ 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))))
8 ioran 985 . . . . . 6 (¬ (𝑘 ∈ (𝐹 supp 𝑍) ∨ 𝑘 ∈ (𝐺 supp 𝑍)) ↔ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))
9 elun 4128 . . . . . 6 (𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ↔ (𝑘 ∈ (𝐹 supp 𝑍) ∨ 𝑘 ∈ (𝐺 supp 𝑍)))
108, 9xchnxbir 333 . . . . 5 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)) ↔ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))
1110anbi2i 623 . . . 4 ((𝑘𝐴 ∧ ¬ 𝑘 ∈ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))))
127, 11bitri 275 . . 3 (𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍))) ↔ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))))
132ffnd 6707 . . . . . . . . . 10 (𝜑𝐹 Fn 𝐴)
14 suppofssd.2 . . . . . . . . . 10 (𝜑𝑍𝐵)
15 elsuppfn 8169 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝐵) → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
1613, 4, 14, 15syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑘 ∈ (𝐹 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
1716notbid 318 . . . . . . . 8 (𝜑 → (¬ 𝑘 ∈ (𝐹 supp 𝑍) ↔ ¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
1817biimpd 229 . . . . . . 7 (𝜑 → (¬ 𝑘 ∈ (𝐹 supp 𝑍) → ¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
193ffnd 6707 . . . . . . . . . 10 (𝜑𝐺 Fn 𝐴)
20 elsuppfn 8169 . . . . . . . . . 10 ((𝐺 Fn 𝐴𝐴𝑉𝑍𝐵) → (𝑘 ∈ (𝐺 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2119, 4, 14, 20syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑘 ∈ (𝐺 supp 𝑍) ↔ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2221notbid 318 . . . . . . . 8 (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑍) ↔ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2322biimpd 229 . . . . . . 7 (𝜑 → (¬ 𝑘 ∈ (𝐺 supp 𝑍) → ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
2418, 23anim12d 609 . . . . . 6 (𝜑 → ((¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)) → (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍))))
2524anim2d 612 . . . . 5 (𝜑 → ((𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍))) → (𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))))
2625imp 406 . . . 4 ((𝜑 ∧ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) → (𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍))))
27 pm3.2 469 . . . . . . . 8 (𝑘𝐴 → ((𝐹𝑘) ≠ 𝑍 → (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍)))
2827necon1bd 2950 . . . . . . 7 (𝑘𝐴 → (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) → (𝐹𝑘) = 𝑍))
29 pm3.2 469 . . . . . . . 8 (𝑘𝐴 → ((𝐺𝑘) ≠ 𝑍 → (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))
3029necon1bd 2950 . . . . . . 7 (𝑘𝐴 → (¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍) → (𝐺𝑘) = 𝑍))
3128, 30anim12d 609 . . . . . 6 (𝑘𝐴 → ((¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)) → ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍)))
3231imdistani 568 . . . . 5 ((𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍))) → (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍)))
3313adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝐹 Fn 𝐴)
3419adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝐺 Fn 𝐴)
354adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝐴𝑉)
36 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → 𝑘𝐴)
37 fnfvof 7688 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝐴𝑉𝑘𝐴)) → ((𝐹f 𝑋𝐺)‘𝑘) = ((𝐹𝑘)𝑋(𝐺𝑘)))
3833, 34, 35, 36, 37syl22anc 838 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → ((𝐹f 𝑋𝐺)‘𝑘) = ((𝐹𝑘)𝑋(𝐺𝑘)))
39 oveq12 7414 . . . . . . 7 (((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍) → ((𝐹𝑘)𝑋(𝐺𝑘)) = (𝑍𝑋𝑍))
4039ad2antll 729 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → ((𝐹𝑘)𝑋(𝐺𝑘)) = (𝑍𝑋𝑍))
41 suppofssd.5 . . . . . . 7 (𝜑 → (𝑍𝑋𝑍) = 𝑍)
4241adantr 480 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → (𝑍𝑋𝑍) = 𝑍)
4338, 40, 423eqtrd 2774 . . . . 5 ((𝜑 ∧ (𝑘𝐴 ∧ ((𝐹𝑘) = 𝑍 ∧ (𝐺𝑘) = 𝑍))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
4432, 43sylan2 593 . . . 4 ((𝜑 ∧ (𝑘𝐴 ∧ (¬ (𝑘𝐴 ∧ (𝐹𝑘) ≠ 𝑍) ∧ ¬ (𝑘𝐴 ∧ (𝐺𝑘) ≠ 𝑍)))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
4526, 44syldan 591 . . 3 ((𝜑 ∧ (𝑘𝐴 ∧ (¬ 𝑘 ∈ (𝐹 supp 𝑍) ∧ ¬ 𝑘 ∈ (𝐺 supp 𝑍)))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
4612, 45sylan2b 594 . 2 ((𝜑𝑘 ∈ (𝐴 ∖ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))) → ((𝐹f 𝑋𝐺)‘𝑘) = 𝑍)
476, 46suppss 8193 1 (𝜑 → ((𝐹f 𝑋𝐺) supp 𝑍) ⊆ ((𝐹 supp 𝑍) ∪ (𝐺 supp 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  cdif 3923  cun 3924  wss 3926   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669   supp csupp 8159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-supp 8160
This theorem is referenced by:  psrbagaddcl  21884  mhpmulcl  22087  mhpaddcl  22089  naddcnff  43386
  Copyright terms: Public domain W3C validator