Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzoopth Structured version   Visualization version   GIF version

Theorem fzoopth 45549
Description: A half-open integer range can represent an ordered pair, analogous to fzopth 13478. (Contributed by Alexander van der Vekens, 1-Jul-2018.)
Assertion
Ref Expression
fzoopth ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))

Proof of Theorem fzoopth
StepHypRef Expression
1 simpl 483 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
2 fzolb 13578 . . . . . . . . 9 (𝑀 ∈ (𝑀..^𝑁) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
31, 2sylibr 233 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝑀..^𝑁))
4 simpr 485 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀..^𝑁) = (𝐽..^𝐾))
53, 4eleqtrd 2840 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝐽..^𝐾))
6 elfzouz 13576 . . . . . . 7 (𝑀 ∈ (𝐽..^𝐾) → 𝑀 ∈ (ℤ𝐽))
7 uzss 12786 . . . . . . 7 (𝑀 ∈ (ℤ𝐽) → (ℤ𝑀) ⊆ (ℤ𝐽))
85, 6, 73syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑀) ⊆ (ℤ𝐽))
92biimpri 227 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝑀 ∈ (𝑀..^𝑁))
109adantr 481 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝑀..^𝑁))
11 eleq2 2826 . . . . . . . . . . 11 ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 ∈ (𝐽..^𝐾)))
1211adantl 482 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 ∈ (𝐽..^𝐾)))
1310, 12mpbid 231 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝐽..^𝐾))
14 elfzolt3b 13584 . . . . . . . . 9 (𝑀 ∈ (𝐽..^𝐾) → 𝐽 ∈ (𝐽..^𝐾))
1513, 14syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝐽 ∈ (𝐽..^𝐾))
1615, 4eleqtrrd 2841 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝐽 ∈ (𝑀..^𝑁))
17 elfzouz 13576 . . . . . . 7 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
18 uzss 12786 . . . . . . 7 (𝐽 ∈ (ℤ𝑀) → (ℤ𝐽) ⊆ (ℤ𝑀))
1916, 17, 183syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝐽) ⊆ (ℤ𝑀))
208, 19eqssd 3961 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑀) = (ℤ𝐽))
21 simpl1 1191 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ ℤ)
22 uz11 12788 . . . . . 6 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2321, 22syl 17 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2420, 23mpbid 231 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 = 𝐽)
25 fzoend 13663 . . . . . . . . 9 (𝐽 ∈ (𝐽..^𝐾) → (𝐾 − 1) ∈ (𝐽..^𝐾))
26 elfzoel2 13571 . . . . . . . . . 10 ((𝐾 − 1) ∈ (𝐽..^𝐾) → 𝐾 ∈ ℤ)
27 eleq2 2826 . . . . . . . . . . . . . . 15 ((𝐽..^𝐾) = (𝑀..^𝑁) → ((𝐾 − 1) ∈ (𝐽..^𝐾) ↔ (𝐾 − 1) ∈ (𝑀..^𝑁)))
2827eqcoms 2744 . . . . . . . . . . . . . 14 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝐾 − 1) ∈ (𝐽..^𝐾) ↔ (𝐾 − 1) ∈ (𝑀..^𝑁)))
29 elfzo2 13575 . . . . . . . . . . . . . . 15 ((𝐾 − 1) ∈ (𝑀..^𝑁) ↔ ((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁))
30 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝐾 ∈ ℤ)
31 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝑁 ∈ ℤ)
32 zlem1lt 12555 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 ↔ (𝐾 − 1) < 𝑁))
3332ancoms 459 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑁 ↔ (𝐾 − 1) < 𝑁))
3433biimprd 247 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 − 1) < 𝑁𝐾𝑁))
3534impancom 452 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → 𝐾𝑁))
3635impcom 408 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝐾𝑁)
3730, 31, 363jca 1128 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
3837expcom 414 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
39383adant1 1130 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4039a1d 25 . . . . . . . . . . . . . . 15 (((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4129, 40sylbi 216 . . . . . . . . . . . . . 14 ((𝐾 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4228, 41syl6bi 252 . . . . . . . . . . . . 13 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))))
4342com23 86 . . . . . . . . . . . 12 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))))
4443impcom 408 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4544com13 88 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4626, 45mpcom 38 . . . . . . . . 9 ((𝐾 − 1) ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4725, 46syl 17 . . . . . . . 8 (𝐽 ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4815, 47mpcom 38 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
49 eluz2 12769 . . . . . . . 8 (𝑁 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
5049biimpri 227 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝑁 ∈ (ℤ𝐾))
51 uzss 12786 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → (ℤ𝑁) ⊆ (ℤ𝐾))
5248, 50, 513syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑁) ⊆ (ℤ𝐾))
53 fzoend 13663 . . . . . . . . . 10 (𝑀 ∈ (𝑀..^𝑁) → (𝑁 − 1) ∈ (𝑀..^𝑁))
54 eleq2 2826 . . . . . . . . . . . 12 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑁 − 1) ∈ (𝑀..^𝑁) ↔ (𝑁 − 1) ∈ (𝐽..^𝐾)))
55 elfzo2 13575 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (𝐽..^𝐾) ↔ ((𝑁 − 1) ∈ (ℤ𝐽) ∧ 𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))
56 pm3.2 470 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
57563ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
5857com12 32 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
59583adant1 1130 . . . . . . . . . . . . 13 (((𝑁 − 1) ∈ (ℤ𝐽) ∧ 𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6055, 59sylbi 216 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6154, 60syl6bi 252 . . . . . . . . . . 11 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑁 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
6261com3l 89 . . . . . . . . . 10 ((𝑁 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
6353, 62syl 17 . . . . . . . . 9 (𝑀 ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
649, 63mpcom 38 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6564imp 407 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))
66 simpl 483 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝑁 ∈ ℤ)
67 simprl 769 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝐾 ∈ ℤ)
68 zlem1lt 12555 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝑁 − 1) < 𝐾))
6968ancoms 459 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐾 ↔ (𝑁 − 1) < 𝐾))
7069biimprd 247 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) < 𝐾𝑁𝐾))
7170impancom 452 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ → 𝑁𝐾))
7271impcom 408 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝑁𝐾)
73 eluz2 12769 . . . . . . . 8 (𝐾 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁𝐾))
7466, 67, 72, 73syl3anbrc 1343 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝐾 ∈ (ℤ𝑁))
75 uzss 12786 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
7665, 74, 753syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝐾) ⊆ (ℤ𝑁))
7752, 76eqssd 3961 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑁) = (ℤ𝐾))
78 simpl2 1192 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑁 ∈ ℤ)
79 uz11 12788 . . . . . 6 (𝑁 ∈ ℤ → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
8078, 79syl 17 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
8177, 80mpbid 231 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑁 = 𝐾)
8224, 81jca 512 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 = 𝐽𝑁 = 𝐾))
8382ex 413 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑀 = 𝐽𝑁 = 𝐾)))
84 oveq12 7366 . 2 ((𝑀 = 𝐽𝑁 = 𝐾) → (𝑀..^𝑁) = (𝐽..^𝐾))
8583, 84impbid1 224 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910   class class class wbr 5105  cfv 6496  (class class class)co 7357  1c1 11052   < clt 11189  cle 11190  cmin 11385  cz 12499  cuz 12763  ..^cfzo 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568
This theorem is referenced by:  2ffzoeq  45550
  Copyright terms: Public domain W3C validator