Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzoopth Structured version   Visualization version   GIF version

Theorem fzoopth 46545
Description: A half-open integer range can represent an ordered pair, analogous to fzopth 13536. (Contributed by Alexander van der Vekens, 1-Jul-2018.)
Assertion
Ref Expression
fzoopth ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))

Proof of Theorem fzoopth
StepHypRef Expression
1 simpl 482 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
2 fzolb 13636 . . . . . . . . 9 (𝑀 ∈ (𝑀..^𝑁) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
31, 2sylibr 233 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝑀..^𝑁))
4 simpr 484 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀..^𝑁) = (𝐽..^𝐾))
53, 4eleqtrd 2827 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝐽..^𝐾))
6 elfzouz 13634 . . . . . . 7 (𝑀 ∈ (𝐽..^𝐾) → 𝑀 ∈ (ℤ𝐽))
7 uzss 12843 . . . . . . 7 (𝑀 ∈ (ℤ𝐽) → (ℤ𝑀) ⊆ (ℤ𝐽))
85, 6, 73syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑀) ⊆ (ℤ𝐽))
92biimpri 227 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝑀 ∈ (𝑀..^𝑁))
109adantr 480 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝑀..^𝑁))
11 eleq2 2814 . . . . . . . . . . 11 ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 ∈ (𝐽..^𝐾)))
1211adantl 481 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 ∈ (𝐽..^𝐾)))
1310, 12mpbid 231 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝐽..^𝐾))
14 elfzolt3b 13642 . . . . . . . . 9 (𝑀 ∈ (𝐽..^𝐾) → 𝐽 ∈ (𝐽..^𝐾))
1513, 14syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝐽 ∈ (𝐽..^𝐾))
1615, 4eleqtrrd 2828 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝐽 ∈ (𝑀..^𝑁))
17 elfzouz 13634 . . . . . . 7 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
18 uzss 12843 . . . . . . 7 (𝐽 ∈ (ℤ𝑀) → (ℤ𝐽) ⊆ (ℤ𝑀))
1916, 17, 183syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝐽) ⊆ (ℤ𝑀))
208, 19eqssd 3992 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑀) = (ℤ𝐽))
21 simpl1 1188 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ ℤ)
22 uz11 12845 . . . . . 6 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2321, 22syl 17 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2420, 23mpbid 231 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 = 𝐽)
25 fzoend 13721 . . . . . . . . 9 (𝐽 ∈ (𝐽..^𝐾) → (𝐾 − 1) ∈ (𝐽..^𝐾))
26 elfzoel2 13629 . . . . . . . . . 10 ((𝐾 − 1) ∈ (𝐽..^𝐾) → 𝐾 ∈ ℤ)
27 eleq2 2814 . . . . . . . . . . . . . . 15 ((𝐽..^𝐾) = (𝑀..^𝑁) → ((𝐾 − 1) ∈ (𝐽..^𝐾) ↔ (𝐾 − 1) ∈ (𝑀..^𝑁)))
2827eqcoms 2732 . . . . . . . . . . . . . 14 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝐾 − 1) ∈ (𝐽..^𝐾) ↔ (𝐾 − 1) ∈ (𝑀..^𝑁)))
29 elfzo2 13633 . . . . . . . . . . . . . . 15 ((𝐾 − 1) ∈ (𝑀..^𝑁) ↔ ((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁))
30 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝐾 ∈ ℤ)
31 simprl 768 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝑁 ∈ ℤ)
32 zlem1lt 12612 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 ↔ (𝐾 − 1) < 𝑁))
3332ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑁 ↔ (𝐾 − 1) < 𝑁))
3433biimprd 247 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 − 1) < 𝑁𝐾𝑁))
3534impancom 451 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → 𝐾𝑁))
3635impcom 407 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝐾𝑁)
3730, 31, 363jca 1125 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
3837expcom 413 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
39383adant1 1127 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4039a1d 25 . . . . . . . . . . . . . . 15 (((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4129, 40sylbi 216 . . . . . . . . . . . . . 14 ((𝐾 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4228, 41syl6bi 253 . . . . . . . . . . . . 13 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))))
4342com23 86 . . . . . . . . . . . 12 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))))
4443impcom 407 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4544com13 88 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4626, 45mpcom 38 . . . . . . . . 9 ((𝐾 − 1) ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4725, 46syl 17 . . . . . . . 8 (𝐽 ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4815, 47mpcom 38 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
49 eluz2 12826 . . . . . . . 8 (𝑁 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
5049biimpri 227 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝑁 ∈ (ℤ𝐾))
51 uzss 12843 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → (ℤ𝑁) ⊆ (ℤ𝐾))
5248, 50, 513syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑁) ⊆ (ℤ𝐾))
53 fzoend 13721 . . . . . . . . . 10 (𝑀 ∈ (𝑀..^𝑁) → (𝑁 − 1) ∈ (𝑀..^𝑁))
54 eleq2 2814 . . . . . . . . . . . 12 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑁 − 1) ∈ (𝑀..^𝑁) ↔ (𝑁 − 1) ∈ (𝐽..^𝐾)))
55 elfzo2 13633 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (𝐽..^𝐾) ↔ ((𝑁 − 1) ∈ (ℤ𝐽) ∧ 𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))
56 pm3.2 469 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
57563ad2ant2 1131 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
5857com12 32 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
59583adant1 1127 . . . . . . . . . . . . 13 (((𝑁 − 1) ∈ (ℤ𝐽) ∧ 𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6055, 59sylbi 216 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6154, 60syl6bi 253 . . . . . . . . . . 11 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑁 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
6261com3l 89 . . . . . . . . . 10 ((𝑁 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
6353, 62syl 17 . . . . . . . . 9 (𝑀 ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
649, 63mpcom 38 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6564imp 406 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))
66 simpl 482 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝑁 ∈ ℤ)
67 simprl 768 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝐾 ∈ ℤ)
68 zlem1lt 12612 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝑁 − 1) < 𝐾))
6968ancoms 458 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐾 ↔ (𝑁 − 1) < 𝐾))
7069biimprd 247 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) < 𝐾𝑁𝐾))
7170impancom 451 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ → 𝑁𝐾))
7271impcom 407 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝑁𝐾)
73 eluz2 12826 . . . . . . . 8 (𝐾 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁𝐾))
7466, 67, 72, 73syl3anbrc 1340 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝐾 ∈ (ℤ𝑁))
75 uzss 12843 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
7665, 74, 753syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝐾) ⊆ (ℤ𝑁))
7752, 76eqssd 3992 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑁) = (ℤ𝐾))
78 simpl2 1189 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑁 ∈ ℤ)
79 uz11 12845 . . . . . 6 (𝑁 ∈ ℤ → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
8078, 79syl 17 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
8177, 80mpbid 231 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑁 = 𝐾)
8224, 81jca 511 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 = 𝐽𝑁 = 𝐾))
8382ex 412 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑀 = 𝐽𝑁 = 𝐾)))
84 oveq12 7411 . 2 ((𝑀 = 𝐽𝑁 = 𝐾) → (𝑀..^𝑁) = (𝐽..^𝐾))
8583, 84impbid1 224 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wss 3941   class class class wbr 5139  cfv 6534  (class class class)co 7402  1c1 11108   < clt 11246  cle 11247  cmin 11442  cz 12556  cuz 12820  ..^cfzo 13625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-nn 12211  df-n0 12471  df-z 12557  df-uz 12821  df-fz 13483  df-fzo 13626
This theorem is referenced by:  2ffzoeq  46546
  Copyright terms: Public domain W3C validator