Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzoopth Structured version   Visualization version   GIF version

Theorem fzoopth 42226
Description: A half-open integer range can represent an ordered pair, analogous to fzopth 12672. (Contributed by Alexander van der Vekens, 1-Jul-2018.)
Assertion
Ref Expression
fzoopth ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))

Proof of Theorem fzoopth
StepHypRef Expression
1 simpl 476 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
2 fzolb 12772 . . . . . . . . 9 (𝑀 ∈ (𝑀..^𝑁) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
31, 2sylibr 226 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝑀..^𝑁))
4 simpr 479 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀..^𝑁) = (𝐽..^𝐾))
53, 4eleqtrd 2909 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝐽..^𝐾))
6 elfzouz 12770 . . . . . . 7 (𝑀 ∈ (𝐽..^𝐾) → 𝑀 ∈ (ℤ𝐽))
7 uzss 11990 . . . . . . 7 (𝑀 ∈ (ℤ𝐽) → (ℤ𝑀) ⊆ (ℤ𝐽))
85, 6, 73syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑀) ⊆ (ℤ𝐽))
92biimpri 220 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝑀 ∈ (𝑀..^𝑁))
109adantr 474 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝑀..^𝑁))
11 eleq2 2896 . . . . . . . . . . 11 ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 ∈ (𝐽..^𝐾)))
1211adantl 475 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 ∈ (𝑀..^𝑁) ↔ 𝑀 ∈ (𝐽..^𝐾)))
1310, 12mpbid 224 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ (𝐽..^𝐾))
14 elfzolt3b 12778 . . . . . . . . 9 (𝑀 ∈ (𝐽..^𝐾) → 𝐽 ∈ (𝐽..^𝐾))
1513, 14syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝐽 ∈ (𝐽..^𝐾))
1615, 4eleqtrrd 2910 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝐽 ∈ (𝑀..^𝑁))
17 elfzouz 12770 . . . . . . 7 (𝐽 ∈ (𝑀..^𝑁) → 𝐽 ∈ (ℤ𝑀))
18 uzss 11990 . . . . . . 7 (𝐽 ∈ (ℤ𝑀) → (ℤ𝐽) ⊆ (ℤ𝑀))
1916, 17, 183syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝐽) ⊆ (ℤ𝑀))
208, 19eqssd 3845 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑀) = (ℤ𝐽))
21 simpl1 1248 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 ∈ ℤ)
22 uz11 11992 . . . . . 6 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2321, 22syl 17 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2420, 23mpbid 224 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑀 = 𝐽)
25 fzoend 12855 . . . . . . . . 9 (𝐽 ∈ (𝐽..^𝐾) → (𝐾 − 1) ∈ (𝐽..^𝐾))
26 elfzoel2 12765 . . . . . . . . . 10 ((𝐾 − 1) ∈ (𝐽..^𝐾) → 𝐾 ∈ ℤ)
27 eleq2 2896 . . . . . . . . . . . . . . 15 ((𝐽..^𝐾) = (𝑀..^𝑁) → ((𝐾 − 1) ∈ (𝐽..^𝐾) ↔ (𝐾 − 1) ∈ (𝑀..^𝑁)))
2827eqcoms 2834 . . . . . . . . . . . . . 14 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝐾 − 1) ∈ (𝐽..^𝐾) ↔ (𝐾 − 1) ∈ (𝑀..^𝑁)))
29 elfzo2 12769 . . . . . . . . . . . . . . 15 ((𝐾 − 1) ∈ (𝑀..^𝑁) ↔ ((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁))
30 simpl 476 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝐾 ∈ ℤ)
31 simprl 789 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝑁 ∈ ℤ)
32 zlem1lt 11758 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 ↔ (𝐾 − 1) < 𝑁))
3332ancoms 452 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑁 ↔ (𝐾 − 1) < 𝑁))
3433biimprd 240 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 − 1) < 𝑁𝐾𝑁))
3534impancom 445 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → 𝐾𝑁))
3635impcom 398 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → 𝐾𝑁)
3730, 31, 363jca 1164 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
3837expcom 404 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
39383adant1 1166 . . . . . . . . . . . . . . . 16 (((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4039a1d 25 . . . . . . . . . . . . . . 15 (((𝐾 − 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 − 1) < 𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4129, 40sylbi 209 . . . . . . . . . . . . . 14 ((𝐾 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4228, 41syl6bi 245 . . . . . . . . . . . . 13 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))))
4342com23 86 . . . . . . . . . . . 12 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))))
4443impcom 398 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (𝐾 ∈ ℤ → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4544com13 88 . . . . . . . . . 10 (𝐾 ∈ ℤ → ((𝐾 − 1) ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))))
4626, 45mpcom 38 . . . . . . . . 9 ((𝐾 − 1) ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4725, 46syl 17 . . . . . . . 8 (𝐽 ∈ (𝐽..^𝐾) → (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁)))
4815, 47mpcom 38 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
49 eluz2 11975 . . . . . . . 8 (𝑁 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁))
5049biimpri 220 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾𝑁) → 𝑁 ∈ (ℤ𝐾))
51 uzss 11990 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → (ℤ𝑁) ⊆ (ℤ𝐾))
5248, 50, 513syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑁) ⊆ (ℤ𝐾))
53 fzoend 12855 . . . . . . . . . 10 (𝑀 ∈ (𝑀..^𝑁) → (𝑁 − 1) ∈ (𝑀..^𝑁))
54 eleq2 2896 . . . . . . . . . . . 12 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑁 − 1) ∈ (𝑀..^𝑁) ↔ (𝑁 − 1) ∈ (𝐽..^𝐾)))
55 elfzo2 12769 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ (𝐽..^𝐾) ↔ ((𝑁 − 1) ∈ (ℤ𝐽) ∧ 𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))
56 pm3.2 463 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
57563ad2ant2 1170 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
5857com12 32 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
59583adant1 1166 . . . . . . . . . . . . 13 (((𝑁 − 1) ∈ (ℤ𝐽) ∧ 𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6055, 59sylbi 209 . . . . . . . . . . . 12 ((𝑁 − 1) ∈ (𝐽..^𝐾) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6154, 60syl6bi 245 . . . . . . . . . . 11 ((𝑀..^𝑁) = (𝐽..^𝐾) → ((𝑁 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
6261com3l 89 . . . . . . . . . 10 ((𝑁 − 1) ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
6353, 62syl 17 . . . . . . . . 9 (𝑀 ∈ (𝑀..^𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))))
649, 63mpcom 38 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾))))
6564imp 397 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)))
66 simpl 476 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝑁 ∈ ℤ)
67 simprl 789 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝐾 ∈ ℤ)
68 zlem1lt 11758 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁𝐾 ↔ (𝑁 − 1) < 𝐾))
6968ancoms 452 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐾 ↔ (𝑁 − 1) < 𝐾))
7069biimprd 240 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) < 𝐾𝑁𝐾))
7170impancom 445 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾) → (𝑁 ∈ ℤ → 𝑁𝐾))
7271impcom 398 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝑁𝐾)
73 eluz2 11975 . . . . . . . 8 (𝐾 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁𝐾))
7466, 67, 72, 73syl3anbrc 1449 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ (𝑁 − 1) < 𝐾)) → 𝐾 ∈ (ℤ𝑁))
75 uzss 11990 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
7665, 74, 753syl 18 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝐾) ⊆ (ℤ𝑁))
7752, 76eqssd 3845 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (ℤ𝑁) = (ℤ𝐾))
78 simpl2 1250 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑁 ∈ ℤ)
79 uz11 11992 . . . . . 6 (𝑁 ∈ ℤ → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
8078, 79syl 17 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
8177, 80mpbid 224 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → 𝑁 = 𝐾)
8224, 81jca 509 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ∧ (𝑀..^𝑁) = (𝐽..^𝐾)) → (𝑀 = 𝐽𝑁 = 𝐾))
8382ex 403 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) → (𝑀 = 𝐽𝑁 = 𝐾)))
84 oveq12 6915 . 2 ((𝑀 = 𝐽𝑁 = 𝐾) → (𝑀..^𝑁) = (𝐽..^𝐾))
8583, 84impbid1 217 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → ((𝑀..^𝑁) = (𝐽..^𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wss 3799   class class class wbr 4874  cfv 6124  (class class class)co 6906  1c1 10254   < clt 10392  cle 10393  cmin 10586  cz 11705  cuz 11969  ..^cfzo 12761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-fzo 12762
This theorem is referenced by:  2ffzoeq  42227
  Copyright terms: Public domain W3C validator