| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclcmpatN | Structured version Visualization version GIF version | ||
| Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclfin.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pclfin.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pclcmpatN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclfin.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | pclfin.c | . . . . . 6 ⊢ 𝑈 = (PCl‘𝐾) | |
| 3 | 1, 2 | pclfinN 39901 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦)) |
| 4 | 3 | eleq2d 2815 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) ↔ 𝑃 ∈ ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦))) |
| 5 | eliun 4962 | . . . 4 ⊢ (𝑃 ∈ ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦)) | |
| 6 | 4, 5 | bitrdi 287 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦))) |
| 7 | elin 3933 | . . . . . . 7 ⊢ (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋)) | |
| 8 | elpwi 4573 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) | |
| 9 | 8 | anim2i 617 | . . . . . . 7 ⊢ ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋)) |
| 10 | 7, 9 | sylbi 217 | . . . . . 6 ⊢ (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋)) |
| 11 | 10 | anim1i 615 | . . . . 5 ⊢ ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) → ((𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦))) |
| 12 | anass 468 | . . . . 5 ⊢ (((𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) ↔ (𝑦 ∈ Fin ∧ (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) | |
| 13 | 11, 12 | sylib 218 | . . . 4 ⊢ ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) → (𝑦 ∈ Fin ∧ (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) |
| 14 | 13 | reximi2 3063 | . . 3 ⊢ (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
| 15 | 6, 14 | biimtrdi 253 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) |
| 16 | 15 | 3impia 1117 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 ∪ ciun 4958 ‘cfv 6514 Fincfn 8921 Atomscatm 39263 AtLatcal 39264 PClcpclN 39888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-om 7846 df-1o 8437 df-en 8922 df-fin 8925 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-lat 18398 df-covers 39266 df-ats 39267 df-atl 39298 df-psubsp 39504 df-pclN 39889 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |