Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclcmpatN Structured version   Visualization version   GIF version

Theorem pclcmpatN 37842
Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfin.a 𝐴 = (Atoms‘𝐾)
pclfin.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclcmpatN ((𝐾 ∈ AtLat ∧ 𝑋𝐴𝑃 ∈ (𝑈𝑋)) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑈   𝑦,𝐾   𝑦,𝑋   𝑦,𝑃

Proof of Theorem pclcmpatN
StepHypRef Expression
1 pclfin.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2 pclfin.c . . . . . 6 𝑈 = (PCl‘𝐾)
31, 2pclfinN 37841 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑈𝑋) = 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
43eleq2d 2824 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) ↔ 𝑃 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))
5 eliun 4925 . . . 4 (𝑃 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦))
64, 5bitrdi 286 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦)))
7 elin 3899 . . . . . . 7 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋))
8 elpwi 4539 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
98anim2i 616 . . . . . . 7 ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦𝑋))
107, 9sylbi 216 . . . . . 6 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦𝑋))
1110anim1i 614 . . . . 5 ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) → ((𝑦 ∈ Fin ∧ 𝑦𝑋) ∧ 𝑃 ∈ (𝑈𝑦)))
12 anass 468 . . . . 5 (((𝑦 ∈ Fin ∧ 𝑦𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) ↔ (𝑦 ∈ Fin ∧ (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
1311, 12sylib 217 . . . 4 ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) → (𝑦 ∈ Fin ∧ (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
1413reximi2 3171 . . 3 (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
156, 14syl6bi 252 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
16153impia 1115 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐴𝑃 ∈ (𝑈𝑋)) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530   ciun 4921  cfv 6418  Fincfn 8691  Atomscatm 37204  AtLatcal 37205  PClcpclN 37828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-covers 37207  df-ats 37208  df-atl 37239  df-psubsp 37444  df-pclN 37829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator