Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclcmpatN | Structured version Visualization version GIF version |
Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfin.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclfin.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclcmpatN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclfin.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | pclfin.c | . . . . . 6 ⊢ 𝑈 = (PCl‘𝐾) | |
3 | 1, 2 | pclfinN 37537 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦)) |
4 | 3 | eleq2d 2818 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) ↔ 𝑃 ∈ ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦))) |
5 | eliun 4885 | . . . 4 ⊢ (𝑃 ∈ ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦)) | |
6 | 4, 5 | bitrdi 290 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦))) |
7 | elin 3859 | . . . . . . 7 ⊢ (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋)) | |
8 | elpwi 4497 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) | |
9 | 8 | anim2i 620 | . . . . . . 7 ⊢ ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋)) |
10 | 7, 9 | sylbi 220 | . . . . . 6 ⊢ (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋)) |
11 | 10 | anim1i 618 | . . . . 5 ⊢ ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) → ((𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦))) |
12 | anass 472 | . . . . 5 ⊢ (((𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) ↔ (𝑦 ∈ Fin ∧ (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) | |
13 | 11, 12 | sylib 221 | . . . 4 ⊢ ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) → (𝑦 ∈ Fin ∧ (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) |
14 | 13 | reximi2 3158 | . . 3 ⊢ (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
15 | 6, 14 | syl6bi 256 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) |
16 | 15 | 3impia 1118 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∃wrex 3054 ∩ cin 3842 ⊆ wss 3843 𝒫 cpw 4488 ∪ ciun 4881 ‘cfv 6339 Fincfn 8555 Atomscatm 36900 AtLatcal 36901 PClcpclN 37524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-om 7600 df-1o 8131 df-en 8556 df-fin 8559 df-proset 17654 df-poset 17672 df-plt 17684 df-lub 17700 df-glb 17701 df-join 17702 df-meet 17703 df-p0 17765 df-lat 17772 df-covers 36903 df-ats 36904 df-atl 36935 df-psubsp 37140 df-pclN 37525 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |