Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclcmpatN Structured version   Visualization version   GIF version

Theorem pclcmpatN 39903
Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfin.a 𝐴 = (Atoms‘𝐾)
pclfin.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclcmpatN ((𝐾 ∈ AtLat ∧ 𝑋𝐴𝑃 ∈ (𝑈𝑋)) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑈   𝑦,𝐾   𝑦,𝑋   𝑦,𝑃

Proof of Theorem pclcmpatN
StepHypRef Expression
1 pclfin.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2 pclfin.c . . . . . 6 𝑈 = (PCl‘𝐾)
31, 2pclfinN 39902 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑈𝑋) = 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
43eleq2d 2827 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) ↔ 𝑃 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))
5 eliun 4995 . . . 4 (𝑃 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦))
64, 5bitrdi 287 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦)))
7 elin 3967 . . . . . . 7 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋))
8 elpwi 4607 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
98anim2i 617 . . . . . . 7 ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦𝑋))
107, 9sylbi 217 . . . . . 6 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦𝑋))
1110anim1i 615 . . . . 5 ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) → ((𝑦 ∈ Fin ∧ 𝑦𝑋) ∧ 𝑃 ∈ (𝑈𝑦)))
12 anass 468 . . . . 5 (((𝑦 ∈ Fin ∧ 𝑦𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) ↔ (𝑦 ∈ Fin ∧ (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
1311, 12sylib 218 . . . 4 ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) → (𝑦 ∈ Fin ∧ (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
1413reximi2 3079 . . 3 (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
156, 14biimtrdi 253 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
16153impia 1118 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐴𝑃 ∈ (𝑈𝑋)) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  cin 3950  wss 3951  𝒫 cpw 4600   ciun 4991  cfv 6561  Fincfn 8985  Atomscatm 39264  AtLatcal 39265  PClcpclN 39889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-om 7888  df-1o 8506  df-en 8986  df-fin 8989  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-covers 39267  df-ats 39268  df-atl 39299  df-psubsp 39505  df-pclN 39890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator