Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclcmpatN Structured version   Visualization version   GIF version

Theorem pclcmpatN 39878
Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfin.a 𝐴 = (Atoms‘𝐾)
pclfin.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclcmpatN ((𝐾 ∈ AtLat ∧ 𝑋𝐴𝑃 ∈ (𝑈𝑋)) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑈   𝑦,𝐾   𝑦,𝑋   𝑦,𝑃

Proof of Theorem pclcmpatN
StepHypRef Expression
1 pclfin.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2 pclfin.c . . . . . 6 𝑈 = (PCl‘𝐾)
31, 2pclfinN 39877 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑈𝑋) = 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
43eleq2d 2819 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) ↔ 𝑃 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦)))
5 eliun 4975 . . . 4 (𝑃 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦))
64, 5bitrdi 287 . . 3 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦)))
7 elin 3947 . . . . . . 7 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋))
8 elpwi 4587 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
98anim2i 617 . . . . . . 7 ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦𝑋))
107, 9sylbi 217 . . . . . 6 (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦𝑋))
1110anim1i 615 . . . . 5 ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) → ((𝑦 ∈ Fin ∧ 𝑦𝑋) ∧ 𝑃 ∈ (𝑈𝑦)))
12 anass 468 . . . . 5 (((𝑦 ∈ Fin ∧ 𝑦𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) ↔ (𝑦 ∈ Fin ∧ (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
1311, 12sylib 218 . . . 4 ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈𝑦)) → (𝑦 ∈ Fin ∧ (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
1413reximi2 3068 . . 3 (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈𝑦) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
156, 14biimtrdi 253 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑃 ∈ (𝑈𝑋) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦))))
16153impia 1117 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐴𝑃 ∈ (𝑈𝑋)) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  cin 3930  wss 3931  𝒫 cpw 4580   ciun 4971  cfv 6541  Fincfn 8967  Atomscatm 39239  AtLatcal 39240  PClcpclN 39864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-om 7870  df-1o 8488  df-en 8968  df-fin 8971  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-lat 18447  df-covers 39242  df-ats 39243  df-atl 39274  df-psubsp 39480  df-pclN 39865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator