![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclcmpatN | Structured version Visualization version GIF version |
Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfin.a | β’ π΄ = (AtomsβπΎ) |
pclfin.c | β’ π = (PClβπΎ) |
Ref | Expression |
---|---|
pclcmpatN | β’ ((πΎ β AtLat β§ π β π΄ β§ π β (πβπ)) β βπ¦ β Fin (π¦ β π β§ π β (πβπ¦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclfin.a | . . . . . 6 β’ π΄ = (AtomsβπΎ) | |
2 | pclfin.c | . . . . . 6 β’ π = (PClβπΎ) | |
3 | 1, 2 | pclfinN 38759 | . . . . 5 β’ ((πΎ β AtLat β§ π β π΄) β (πβπ) = βͺ π¦ β (Fin β© π« π)(πβπ¦)) |
4 | 3 | eleq2d 2819 | . . . 4 β’ ((πΎ β AtLat β§ π β π΄) β (π β (πβπ) β π β βͺ π¦ β (Fin β© π« π)(πβπ¦))) |
5 | eliun 5000 | . . . 4 β’ (π β βͺ π¦ β (Fin β© π« π)(πβπ¦) β βπ¦ β (Fin β© π« π)π β (πβπ¦)) | |
6 | 4, 5 | bitrdi 286 | . . 3 β’ ((πΎ β AtLat β§ π β π΄) β (π β (πβπ) β βπ¦ β (Fin β© π« π)π β (πβπ¦))) |
7 | elin 3963 | . . . . . . 7 β’ (π¦ β (Fin β© π« π) β (π¦ β Fin β§ π¦ β π« π)) | |
8 | elpwi 4608 | . . . . . . . 8 β’ (π¦ β π« π β π¦ β π) | |
9 | 8 | anim2i 617 | . . . . . . 7 β’ ((π¦ β Fin β§ π¦ β π« π) β (π¦ β Fin β§ π¦ β π)) |
10 | 7, 9 | sylbi 216 | . . . . . 6 β’ (π¦ β (Fin β© π« π) β (π¦ β Fin β§ π¦ β π)) |
11 | 10 | anim1i 615 | . . . . 5 β’ ((π¦ β (Fin β© π« π) β§ π β (πβπ¦)) β ((π¦ β Fin β§ π¦ β π) β§ π β (πβπ¦))) |
12 | anass 469 | . . . . 5 β’ (((π¦ β Fin β§ π¦ β π) β§ π β (πβπ¦)) β (π¦ β Fin β§ (π¦ β π β§ π β (πβπ¦)))) | |
13 | 11, 12 | sylib 217 | . . . 4 β’ ((π¦ β (Fin β© π« π) β§ π β (πβπ¦)) β (π¦ β Fin β§ (π¦ β π β§ π β (πβπ¦)))) |
14 | 13 | reximi2 3079 | . . 3 β’ (βπ¦ β (Fin β© π« π)π β (πβπ¦) β βπ¦ β Fin (π¦ β π β§ π β (πβπ¦))) |
15 | 6, 14 | syl6bi 252 | . 2 β’ ((πΎ β AtLat β§ π β π΄) β (π β (πβπ) β βπ¦ β Fin (π¦ β π β§ π β (πβπ¦)))) |
16 | 15 | 3impia 1117 | 1 β’ ((πΎ β AtLat β§ π β π΄ β§ π β (πβπ)) β βπ¦ β Fin (π¦ β π β§ π β (πβπ¦))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwrex 3070 β© cin 3946 β wss 3947 π« cpw 4601 βͺ ciun 4996 βcfv 6540 Fincfn 8935 Atomscatm 38121 AtLatcal 38122 PClcpclN 38746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-om 7852 df-1o 8462 df-en 8936 df-fin 8939 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-lat 18381 df-covers 38124 df-ats 38125 df-atl 38156 df-psubsp 38362 df-pclN 38747 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |