| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pclcmpatN | Structured version Visualization version GIF version | ||
| Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclfin.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pclfin.c | ⊢ 𝑈 = (PCl‘𝐾) |
| Ref | Expression |
|---|---|
| pclcmpatN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclfin.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | pclfin.c | . . . . . 6 ⊢ 𝑈 = (PCl‘𝐾) | |
| 3 | 1, 2 | pclfinN 39919 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦)) |
| 4 | 3 | eleq2d 2820 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) ↔ 𝑃 ∈ ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦))) |
| 5 | eliun 4971 | . . . 4 ⊢ (𝑃 ∈ ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦)) | |
| 6 | 4, 5 | bitrdi 287 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦))) |
| 7 | elin 3942 | . . . . . . 7 ⊢ (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋)) | |
| 8 | elpwi 4582 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) | |
| 9 | 8 | anim2i 617 | . . . . . . 7 ⊢ ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋)) |
| 10 | 7, 9 | sylbi 217 | . . . . . 6 ⊢ (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋)) |
| 11 | 10 | anim1i 615 | . . . . 5 ⊢ ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) → ((𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦))) |
| 12 | anass 468 | . . . . 5 ⊢ (((𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) ↔ (𝑦 ∈ Fin ∧ (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) | |
| 13 | 11, 12 | sylib 218 | . . . 4 ⊢ ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) → (𝑦 ∈ Fin ∧ (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) |
| 14 | 13 | reximi2 3069 | . . 3 ⊢ (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
| 15 | 6, 14 | biimtrdi 253 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) |
| 16 | 15 | 3impia 1117 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ∪ ciun 4967 ‘cfv 6531 Fincfn 8959 Atomscatm 39281 AtLatcal 39282 PClcpclN 39906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-om 7862 df-1o 8480 df-en 8960 df-fin 8963 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-lat 18442 df-covers 39284 df-ats 39285 df-atl 39316 df-psubsp 39522 df-pclN 39907 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |