Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclcmpatN | Structured version Visualization version GIF version |
Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfin.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclfin.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclcmpatN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclfin.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | pclfin.c | . . . . . 6 ⊢ 𝑈 = (PCl‘𝐾) | |
3 | 1, 2 | pclfinN 37841 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦)) |
4 | 3 | eleq2d 2824 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) ↔ 𝑃 ∈ ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦))) |
5 | eliun 4925 | . . . 4 ⊢ (𝑃 ∈ ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦)) | |
6 | 4, 5 | bitrdi 286 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦))) |
7 | elin 3899 | . . . . . . 7 ⊢ (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋)) | |
8 | elpwi 4539 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) | |
9 | 8 | anim2i 616 | . . . . . . 7 ⊢ ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋)) |
10 | 7, 9 | sylbi 216 | . . . . . 6 ⊢ (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋)) |
11 | 10 | anim1i 614 | . . . . 5 ⊢ ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) → ((𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦))) |
12 | anass 468 | . . . . 5 ⊢ (((𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) ↔ (𝑦 ∈ Fin ∧ (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) → (𝑦 ∈ Fin ∧ (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) |
14 | 13 | reximi2 3171 | . . 3 ⊢ (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
15 | 6, 14 | syl6bi 252 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) |
16 | 15 | 3impia 1115 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ ciun 4921 ‘cfv 6418 Fincfn 8691 Atomscatm 37204 AtLatcal 37205 PClcpclN 37828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-lat 18065 df-covers 37207 df-ats 37208 df-atl 37239 df-psubsp 37444 df-pclN 37829 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |