![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclcmpatN | Structured version Visualization version GIF version |
Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfin.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclfin.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclcmpatN | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclfin.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | pclfin.c | . . . . . 6 ⊢ 𝑈 = (PCl‘𝐾) | |
3 | 1, 2 | pclfinN 38709 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦)) |
4 | 3 | eleq2d 2820 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) ↔ 𝑃 ∈ ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦))) |
5 | eliun 5000 | . . . 4 ⊢ (𝑃 ∈ ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦)) | |
6 | 4, 5 | bitrdi 287 | . . 3 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) ↔ ∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦))) |
7 | elin 3963 | . . . . . . 7 ⊢ (𝑦 ∈ (Fin ∩ 𝒫 𝑋) ↔ (𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋)) | |
8 | elpwi 4608 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋) | |
9 | 8 | anim2i 618 | . . . . . . 7 ⊢ ((𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋)) |
10 | 7, 9 | sylbi 216 | . . . . . 6 ⊢ (𝑦 ∈ (Fin ∩ 𝒫 𝑋) → (𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋)) |
11 | 10 | anim1i 616 | . . . . 5 ⊢ ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) → ((𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦))) |
12 | anass 470 | . . . . 5 ⊢ (((𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) ↔ (𝑦 ∈ Fin ∧ (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ ((𝑦 ∈ (Fin ∩ 𝒫 𝑋) ∧ 𝑃 ∈ (𝑈‘𝑦)) → (𝑦 ∈ Fin ∧ (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) |
14 | 13 | reximi2 3080 | . . 3 ⊢ (∃𝑦 ∈ (Fin ∩ 𝒫 𝑋)𝑃 ∈ (𝑈‘𝑦) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
15 | 6, 14 | syl6bi 253 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑃 ∈ (𝑈‘𝑋) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦)))) |
16 | 15 | 3impia 1118 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4601 ∪ ciun 4996 ‘cfv 6540 Fincfn 8935 Atomscatm 38071 AtLatcal 38072 PClcpclN 38696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-om 7851 df-1o 8461 df-en 8936 df-fin 8939 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-lat 18381 df-covers 38074 df-ats 38075 df-atl 38106 df-psubsp 38312 df-pclN 38697 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |