Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsateln0 Structured version   Visualization version   GIF version

Theorem lsateln0 36146
Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
lsateln0.z 0 = (0g𝑊)
lsateln0.a 𝐴 = (LSAtoms‘𝑊)
lsateln0.w (𝜑𝑊 ∈ LMod)
lsateln0.u (𝜑𝑈𝐴)
Assertion
Ref Expression
lsateln0 (𝜑 → ∃𝑣𝑈 𝑣0 )
Distinct variable groups:   𝑣,𝑈   𝑣,𝑊   𝑣, 0   𝜑,𝑣
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem lsateln0
StepHypRef Expression
1 lsateln0.u . . . 4 (𝜑𝑈𝐴)
2 lsateln0.w . . . . 5 (𝜑𝑊 ∈ LMod)
3 eqid 2821 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2821 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsateln0.z . . . . . 6 0 = (0g𝑊)
6 lsateln0.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 36142 . . . . 5 (𝑊 ∈ LMod → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
82, 7syl 17 . . . 4 (𝜑 → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
91, 8mpbid 234 . . 3 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))
10 eldifi 4103 . . . . . 6 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑣 ∈ (Base‘𝑊))
113, 4lspsnid 19765 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))
122, 10, 11syl2an 597 . . . . 5 ((𝜑𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))
13 eleq2 2901 . . . . 5 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑣𝑈𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})))
1412, 13syl5ibrcom 249 . . . 4 ((𝜑𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑣𝑈))
1514reximdva 3274 . . 3 (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈))
169, 15mpd 15 . 2 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈)
17 eldifsn 4719 . . . . . . 7 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ))
1817anbi1i 625 . . . . . 6 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) ↔ ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) ∧ 𝑣𝑈))
19 anass 471 . . . . . 6 (((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) ∧ 𝑣𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣0𝑣𝑈)))
2018, 19bitri 277 . . . . 5 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣0𝑣𝑈)))
2120simprbi 499 . . . 4 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) → (𝑣0𝑣𝑈))
2221ancomd 464 . . 3 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) → (𝑣𝑈𝑣0 ))
2322reximi2 3244 . 2 (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈 → ∃𝑣𝑈 𝑣0 )
2416, 23syl 17 1 (𝜑 → ∃𝑣𝑈 𝑣0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  cdif 3933  {csn 4567  cfv 6355  Basecbs 16483  0gc0g 16713  LModclmod 19634  LSpanclspn 19743  LSAtomsclsa 36125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lsatoms 36127
This theorem is referenced by:  dvh1dim  38593  dochkr1  38629  dochkr1OLDN  38630  lcfrlem40  38733
  Copyright terms: Public domain W3C validator