| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsateln0 | Structured version Visualization version GIF version | ||
| Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsateln0.z | ⊢ 0 = (0g‘𝑊) |
| lsateln0.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsateln0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lsateln0.u | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| lsateln0 | ⊢ (𝜑 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsateln0.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐴) | |
| 2 | lsateln0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | eqid 2731 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | lsateln0.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 6 | lsateln0.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 7 | 3, 4, 5, 6 | islsat 39036 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))) |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))) |
| 9 | 1, 8 | mpbid 232 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})) |
| 10 | eldifi 4081 | . . . . . 6 ⊢ (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑣 ∈ (Base‘𝑊)) | |
| 11 | 3, 4 | lspsnid 20927 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})) |
| 12 | 2, 10, 11 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})) |
| 13 | eleq2 2820 | . . . . 5 ⊢ (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑣 ∈ 𝑈 ↔ 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))) | |
| 14 | 12, 13 | syl5ibrcom 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑣 ∈ 𝑈)) |
| 15 | 14 | reximdva 3145 | . . 3 ⊢ (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈)) |
| 16 | 9, 15 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈) |
| 17 | eldifsn 4738 | . . . . . . 7 ⊢ (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 )) | |
| 18 | 17 | anbi1i 624 | . . . . . 6 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) ↔ ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 ) ∧ 𝑣 ∈ 𝑈)) |
| 19 | anass 468 | . . . . . 6 ⊢ (((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 ) ∧ 𝑣 ∈ 𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈))) | |
| 20 | 18, 19 | bitri 275 | . . . . 5 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈))) |
| 21 | 20 | simprbi 496 | . . . 4 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) → (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈)) |
| 22 | 21 | ancomd 461 | . . 3 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) → (𝑣 ∈ 𝑈 ∧ 𝑣 ≠ 0 )) |
| 23 | 22 | reximi2 3065 | . 2 ⊢ (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
| 24 | 16, 23 | syl 17 | 1 ⊢ (𝜑 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∖ cdif 3899 {csn 4576 ‘cfv 6481 Basecbs 17120 0gc0g 17343 LModclmod 20794 LSpanclspn 20905 LSAtomsclsa 39019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lsatoms 39021 |
| This theorem is referenced by: dvh1dim 41487 dochkr1 41523 dochkr1OLDN 41524 lcfrlem40 41627 |
| Copyright terms: Public domain | W3C validator |