Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsateln0 Structured version   Visualization version   GIF version

Theorem lsateln0 38332
Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
lsateln0.z 0 = (0g𝑊)
lsateln0.a 𝐴 = (LSAtoms‘𝑊)
lsateln0.w (𝜑𝑊 ∈ LMod)
lsateln0.u (𝜑𝑈𝐴)
Assertion
Ref Expression
lsateln0 (𝜑 → ∃𝑣𝑈 𝑣0 )
Distinct variable groups:   𝑣,𝑈   𝑣,𝑊   𝑣, 0   𝜑,𝑣
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem lsateln0
StepHypRef Expression
1 lsateln0.u . . . 4 (𝜑𝑈𝐴)
2 lsateln0.w . . . . 5 (𝜑𝑊 ∈ LMod)
3 eqid 2731 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2731 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsateln0.z . . . . . 6 0 = (0g𝑊)
6 lsateln0.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 38328 . . . . 5 (𝑊 ∈ LMod → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
82, 7syl 17 . . . 4 (𝜑 → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
91, 8mpbid 231 . . 3 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))
10 eldifi 4126 . . . . . 6 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑣 ∈ (Base‘𝑊))
113, 4lspsnid 20836 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))
122, 10, 11syl2an 595 . . . . 5 ((𝜑𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))
13 eleq2 2821 . . . . 5 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑣𝑈𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})))
1412, 13syl5ibrcom 246 . . . 4 ((𝜑𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑣𝑈))
1514reximdva 3167 . . 3 (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈))
169, 15mpd 15 . 2 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈)
17 eldifsn 4790 . . . . . . 7 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ))
1817anbi1i 623 . . . . . 6 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) ↔ ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) ∧ 𝑣𝑈))
19 anass 468 . . . . . 6 (((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) ∧ 𝑣𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣0𝑣𝑈)))
2018, 19bitri 275 . . . . 5 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣0𝑣𝑈)))
2120simprbi 496 . . . 4 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) → (𝑣0𝑣𝑈))
2221ancomd 461 . . 3 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) → (𝑣𝑈𝑣0 ))
2322reximi2 3078 . 2 (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈 → ∃𝑣𝑈 𝑣0 )
2416, 23syl 17 1 (𝜑 → ∃𝑣𝑈 𝑣0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939  wrex 3069  cdif 3945  {csn 4628  cfv 6543  Basecbs 17151  0gc0g 17392  LModclmod 20702  LSpanclspn 20814  LSAtomsclsa 38311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-lmod 20704  df-lss 20775  df-lsp 20815  df-lsatoms 38313
This theorem is referenced by:  dvh1dim  40780  dochkr1  40816  dochkr1OLDN  40817  lcfrlem40  40920
  Copyright terms: Public domain W3C validator