Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsateln0 Structured version   Visualization version   GIF version

Theorem lsateln0 38973
Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
lsateln0.z 0 = (0g𝑊)
lsateln0.a 𝐴 = (LSAtoms‘𝑊)
lsateln0.w (𝜑𝑊 ∈ LMod)
lsateln0.u (𝜑𝑈𝐴)
Assertion
Ref Expression
lsateln0 (𝜑 → ∃𝑣𝑈 𝑣0 )
Distinct variable groups:   𝑣,𝑈   𝑣,𝑊   𝑣, 0   𝜑,𝑣
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem lsateln0
StepHypRef Expression
1 lsateln0.u . . . 4 (𝜑𝑈𝐴)
2 lsateln0.w . . . . 5 (𝜑𝑊 ∈ LMod)
3 eqid 2729 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2729 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsateln0.z . . . . . 6 0 = (0g𝑊)
6 lsateln0.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 38969 . . . . 5 (𝑊 ∈ LMod → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
82, 7syl 17 . . . 4 (𝜑 → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
91, 8mpbid 232 . . 3 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))
10 eldifi 4084 . . . . . 6 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑣 ∈ (Base‘𝑊))
113, 4lspsnid 20914 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))
122, 10, 11syl2an 596 . . . . 5 ((𝜑𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))
13 eleq2 2817 . . . . 5 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑣𝑈𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})))
1412, 13syl5ibrcom 247 . . . 4 ((𝜑𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑣𝑈))
1514reximdva 3142 . . 3 (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈))
169, 15mpd 15 . 2 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈)
17 eldifsn 4740 . . . . . . 7 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ))
1817anbi1i 624 . . . . . 6 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) ↔ ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) ∧ 𝑣𝑈))
19 anass 468 . . . . . 6 (((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) ∧ 𝑣𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣0𝑣𝑈)))
2018, 19bitri 275 . . . . 5 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣0𝑣𝑈)))
2120simprbi 496 . . . 4 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) → (𝑣0𝑣𝑈))
2221ancomd 461 . . 3 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) → (𝑣𝑈𝑣0 ))
2322reximi2 3062 . 2 (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈 → ∃𝑣𝑈 𝑣0 )
2416, 23syl 17 1 (𝜑 → ∃𝑣𝑈 𝑣0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3902  {csn 4579  cfv 6486  Basecbs 17138  0gc0g 17361  LModclmod 20781  LSpanclspn 20892  LSAtomsclsa 38952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lsatoms 38954
This theorem is referenced by:  dvh1dim  41421  dochkr1  41457  dochkr1OLDN  41458  lcfrlem40  41561
  Copyright terms: Public domain W3C validator