| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsateln0 | Structured version Visualization version GIF version | ||
| Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.) |
| Ref | Expression |
|---|---|
| lsateln0.z | ⊢ 0 = (0g‘𝑊) |
| lsateln0.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lsateln0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lsateln0.u | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| lsateln0 | ⊢ (𝜑 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsateln0.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐴) | |
| 2 | lsateln0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | eqid 2730 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | lsateln0.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 6 | lsateln0.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 7 | 3, 4, 5, 6 | islsat 38991 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))) |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))) |
| 9 | 1, 8 | mpbid 232 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})) |
| 10 | eldifi 4097 | . . . . . 6 ⊢ (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑣 ∈ (Base‘𝑊)) | |
| 11 | 3, 4 | lspsnid 20906 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})) |
| 12 | 2, 10, 11 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})) |
| 13 | eleq2 2818 | . . . . 5 ⊢ (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑣 ∈ 𝑈 ↔ 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))) | |
| 14 | 12, 13 | syl5ibrcom 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑣 ∈ 𝑈)) |
| 15 | 14 | reximdva 3147 | . . 3 ⊢ (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈)) |
| 16 | 9, 15 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈) |
| 17 | eldifsn 4753 | . . . . . . 7 ⊢ (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 )) | |
| 18 | 17 | anbi1i 624 | . . . . . 6 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) ↔ ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 ) ∧ 𝑣 ∈ 𝑈)) |
| 19 | anass 468 | . . . . . 6 ⊢ (((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 ) ∧ 𝑣 ∈ 𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈))) | |
| 20 | 18, 19 | bitri 275 | . . . . 5 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈))) |
| 21 | 20 | simprbi 496 | . . . 4 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) → (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈)) |
| 22 | 21 | ancomd 461 | . . 3 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) → (𝑣 ∈ 𝑈 ∧ 𝑣 ≠ 0 )) |
| 23 | 22 | reximi2 3063 | . 2 ⊢ (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
| 24 | 16, 23 | syl 17 | 1 ⊢ (𝜑 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ∖ cdif 3914 {csn 4592 ‘cfv 6514 Basecbs 17186 0gc0g 17409 LModclmod 20773 LSpanclspn 20884 LSAtomsclsa 38974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lsatoms 38976 |
| This theorem is referenced by: dvh1dim 41443 dochkr1 41479 dochkr1OLDN 41480 lcfrlem40 41583 |
| Copyright terms: Public domain | W3C validator |