Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsateln0 | Structured version Visualization version GIF version |
Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.) |
Ref | Expression |
---|---|
lsateln0.z | ⊢ 0 = (0g‘𝑊) |
lsateln0.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsateln0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lsateln0.u | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Ref | Expression |
---|---|
lsateln0 | ⊢ (𝜑 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsateln0.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐴) | |
2 | lsateln0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | eqid 2739 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | eqid 2739 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
5 | lsateln0.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
6 | lsateln0.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
7 | 3, 4, 5, 6 | islsat 36651 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))) |
9 | 1, 8 | mpbid 235 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})) |
10 | eldifi 4018 | . . . . . 6 ⊢ (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑣 ∈ (Base‘𝑊)) | |
11 | 3, 4 | lspsnid 19887 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})) |
12 | 2, 10, 11 | syl2an 599 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})) |
13 | eleq2 2822 | . . . . 5 ⊢ (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑣 ∈ 𝑈 ↔ 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))) | |
14 | 12, 13 | syl5ibrcom 250 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑣 ∈ 𝑈)) |
15 | 14 | reximdva 3185 | . . 3 ⊢ (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈)) |
16 | 9, 15 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈) |
17 | eldifsn 4676 | . . . . . . 7 ⊢ (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 )) | |
18 | 17 | anbi1i 627 | . . . . . 6 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) ↔ ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 ) ∧ 𝑣 ∈ 𝑈)) |
19 | anass 472 | . . . . . 6 ⊢ (((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 ) ∧ 𝑣 ∈ 𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈))) | |
20 | 18, 19 | bitri 278 | . . . . 5 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈))) |
21 | 20 | simprbi 500 | . . . 4 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) → (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈)) |
22 | 21 | ancomd 465 | . . 3 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) → (𝑣 ∈ 𝑈 ∧ 𝑣 ≠ 0 )) |
23 | 22 | reximi2 3159 | . 2 ⊢ (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
24 | 16, 23 | syl 17 | 1 ⊢ (𝜑 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ∃wrex 3055 ∖ cdif 3841 {csn 4517 ‘cfv 6340 Basecbs 16589 0gc0g 16819 LModclmod 19756 LSpanclspn 19865 LSAtomsclsa 36634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-0g 16821 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-grp 18225 df-lmod 19758 df-lss 19826 df-lsp 19866 df-lsatoms 36636 |
This theorem is referenced by: dvh1dim 39102 dochkr1 39138 dochkr1OLDN 39139 lcfrlem40 39242 |
Copyright terms: Public domain | W3C validator |