Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsateln0 Structured version   Visualization version   GIF version

Theorem lsateln0 37009
Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
lsateln0.z 0 = (0g𝑊)
lsateln0.a 𝐴 = (LSAtoms‘𝑊)
lsateln0.w (𝜑𝑊 ∈ LMod)
lsateln0.u (𝜑𝑈𝐴)
Assertion
Ref Expression
lsateln0 (𝜑 → ∃𝑣𝑈 𝑣0 )
Distinct variable groups:   𝑣,𝑈   𝑣,𝑊   𝑣, 0   𝜑,𝑣
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem lsateln0
StepHypRef Expression
1 lsateln0.u . . . 4 (𝜑𝑈𝐴)
2 lsateln0.w . . . . 5 (𝜑𝑊 ∈ LMod)
3 eqid 2738 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2738 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsateln0.z . . . . . 6 0 = (0g𝑊)
6 lsateln0.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 37005 . . . . 5 (𝑊 ∈ LMod → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
82, 7syl 17 . . . 4 (𝜑 → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
91, 8mpbid 231 . . 3 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))
10 eldifi 4061 . . . . . 6 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑣 ∈ (Base‘𝑊))
113, 4lspsnid 20255 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))
122, 10, 11syl2an 596 . . . . 5 ((𝜑𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))
13 eleq2 2827 . . . . 5 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑣𝑈𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})))
1412, 13syl5ibrcom 246 . . . 4 ((𝜑𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑣𝑈))
1514reximdva 3203 . . 3 (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈))
169, 15mpd 15 . 2 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈)
17 eldifsn 4720 . . . . . . 7 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ))
1817anbi1i 624 . . . . . 6 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) ↔ ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) ∧ 𝑣𝑈))
19 anass 469 . . . . . 6 (((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) ∧ 𝑣𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣0𝑣𝑈)))
2018, 19bitri 274 . . . . 5 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣0𝑣𝑈)))
2120simprbi 497 . . . 4 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) → (𝑣0𝑣𝑈))
2221ancomd 462 . . 3 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) → (𝑣𝑈𝑣0 ))
2322reximi2 3175 . 2 (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈 → ∃𝑣𝑈 𝑣0 )
2416, 23syl 17 1 (𝜑 → ∃𝑣𝑈 𝑣0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  {csn 4561  cfv 6433  Basecbs 16912  0gc0g 17150  LModclmod 20123  LSpanclspn 20233  LSAtomsclsa 36988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lsatoms 36990
This theorem is referenced by:  dvh1dim  39456  dochkr1  39492  dochkr1OLDN  39493  lcfrlem40  39596
  Copyright terms: Public domain W3C validator