Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsateln0 | Structured version Visualization version GIF version |
Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.) |
Ref | Expression |
---|---|
lsateln0.z | ⊢ 0 = (0g‘𝑊) |
lsateln0.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsateln0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lsateln0.u | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Ref | Expression |
---|---|
lsateln0 | ⊢ (𝜑 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsateln0.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐴) | |
2 | lsateln0.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | eqid 2738 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
5 | lsateln0.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
6 | lsateln0.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
7 | 3, 4, 5, 6 | islsat 37005 | . . . . 5 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))) |
9 | 1, 8 | mpbid 231 | . . 3 ⊢ (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})) |
10 | eldifi 4061 | . . . . . 6 ⊢ (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑣 ∈ (Base‘𝑊)) | |
11 | 3, 4 | lspsnid 20255 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})) |
12 | 2, 10, 11 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})) |
13 | eleq2 2827 | . . . . 5 ⊢ (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑣 ∈ 𝑈 ↔ 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))) | |
14 | 12, 13 | syl5ibrcom 246 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑣 ∈ 𝑈)) |
15 | 14 | reximdva 3203 | . . 3 ⊢ (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈)) |
16 | 9, 15 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈) |
17 | eldifsn 4720 | . . . . . . 7 ⊢ (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 )) | |
18 | 17 | anbi1i 624 | . . . . . 6 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) ↔ ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 ) ∧ 𝑣 ∈ 𝑈)) |
19 | anass 469 | . . . . . 6 ⊢ (((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 ) ∧ 𝑣 ∈ 𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈))) | |
20 | 18, 19 | bitri 274 | . . . . 5 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈))) |
21 | 20 | simprbi 497 | . . . 4 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) → (𝑣 ≠ 0 ∧ 𝑣 ∈ 𝑈)) |
22 | 21 | ancomd 462 | . . 3 ⊢ ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣 ∈ 𝑈) → (𝑣 ∈ 𝑈 ∧ 𝑣 ≠ 0 )) |
23 | 22 | reximi2 3175 | . 2 ⊢ (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣 ∈ 𝑈 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
24 | 16, 23 | syl 17 | 1 ⊢ (𝜑 → ∃𝑣 ∈ 𝑈 𝑣 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∖ cdif 3884 {csn 4561 ‘cfv 6433 Basecbs 16912 0gc0g 17150 LModclmod 20123 LSpanclspn 20233 LSAtomsclsa 36988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lsatoms 36990 |
This theorem is referenced by: dvh1dim 39456 dochkr1 39492 dochkr1OLDN 39493 lcfrlem40 39596 |
Copyright terms: Public domain | W3C validator |