Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsateln0 Structured version   Visualization version   GIF version

Theorem lsateln0 36125
 Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
lsateln0.z 0 = (0g𝑊)
lsateln0.a 𝐴 = (LSAtoms‘𝑊)
lsateln0.w (𝜑𝑊 ∈ LMod)
lsateln0.u (𝜑𝑈𝐴)
Assertion
Ref Expression
lsateln0 (𝜑 → ∃𝑣𝑈 𝑣0 )
Distinct variable groups:   𝑣,𝑈   𝑣,𝑊   𝑣, 0   𝜑,𝑣
Allowed substitution hint:   𝐴(𝑣)

Proof of Theorem lsateln0
StepHypRef Expression
1 lsateln0.u . . . 4 (𝜑𝑈𝐴)
2 lsateln0.w . . . . 5 (𝜑𝑊 ∈ LMod)
3 eqid 2821 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2821 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsateln0.z . . . . . 6 0 = (0g𝑊)
6 lsateln0.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 36121 . . . . 5 (𝑊 ∈ LMod → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
82, 7syl 17 . . . 4 (𝜑 → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
91, 8mpbid 234 . . 3 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))
10 eldifi 4103 . . . . . 6 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑣 ∈ (Base‘𝑊))
113, 4lspsnid 19759 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))
122, 10, 11syl2an 597 . . . . 5 ((𝜑𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑣 ∈ ((LSpan‘𝑊)‘{𝑣}))
13 eleq2 2901 . . . . 5 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑣𝑈𝑣 ∈ ((LSpan‘𝑊)‘{𝑣})))
1412, 13syl5ibrcom 249 . . . 4 ((𝜑𝑣 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑣𝑈))
1514reximdva 3274 . . 3 (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈))
169, 15mpd 15 . 2 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈)
17 eldifsn 4713 . . . . . . 7 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ))
1817anbi1i 625 . . . . . 6 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) ↔ ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) ∧ 𝑣𝑈))
19 anass 471 . . . . . 6 (((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) ∧ 𝑣𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣0𝑣𝑈)))
2018, 19bitri 277 . . . . 5 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) ↔ (𝑣 ∈ (Base‘𝑊) ∧ (𝑣0𝑣𝑈)))
2120simprbi 499 . . . 4 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) → (𝑣0𝑣𝑈))
2221ancomd 464 . . 3 ((𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑣𝑈) → (𝑣𝑈𝑣0 ))
2322reximi2 3244 . 2 (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑣𝑈 → ∃𝑣𝑈 𝑣0 )
2416, 23syl 17 1 (𝜑 → ∃𝑣𝑈 𝑣0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1533   ∈ wcel 2110   ≠ wne 3016  ∃wrex 3139   ∖ cdif 3933  {csn 4561  ‘cfv 6350  Basecbs 16477  0gc0g 16707  LModclmod 19628  LSpanclspn 19737  LSAtomsclsa 36104 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lsatoms 36106 This theorem is referenced by:  dvh1dim  38572  dochkr1  38608  dochkr1OLDN  38609  lcfrlem40  38712
 Copyright terms: Public domain W3C validator