MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqreu Structured version   Visualization version   GIF version

Theorem resqreu 14605
Description: Existence and uniqueness for the real square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqreu ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Distinct variable group:   𝑥,𝐴

Proof of Theorem resqreu
StepHypRef Expression
1 resqrex 14603 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴))
2 recn 10619 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
32adantr 481 . . . . 5 ((𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) → 𝑥 ∈ ℂ)
4 simprr 769 . . . . . 6 ((𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) → (𝑥↑2) = 𝐴)
5 rere 14474 . . . . . . . . 9 (𝑥 ∈ ℝ → (ℜ‘𝑥) = 𝑥)
65breq2d 5074 . . . . . . . 8 (𝑥 ∈ ℝ → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ 𝑥))
76biimpar 478 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → 0 ≤ (ℜ‘𝑥))
87adantrr 713 . . . . . 6 ((𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) → 0 ≤ (ℜ‘𝑥))
9 rennim 14591 . . . . . . 7 (𝑥 ∈ ℝ → (i · 𝑥) ∉ ℝ+)
109adantr 481 . . . . . 6 ((𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) → (i · 𝑥) ∉ ℝ+)
114, 8, 103jca 1122 . . . . 5 ((𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) → ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
123, 11jca 512 . . . 4 ((𝑥 ∈ ℝ ∧ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴)) → (𝑥 ∈ ℂ ∧ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
1312reximi2 3248 . . 3 (∃𝑥 ∈ ℝ (0 ≤ 𝑥 ∧ (𝑥↑2) = 𝐴) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
141, 13syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
15 recn 10619 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1615adantr 481 . . 3 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ)
17 sqrmo 14604 . . 3 (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
1816, 17syl 17 . 2 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
19 reu5 3435 . 2 (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
2014, 18, 19sylanbrc 583 1 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wnel 3127  wrex 3143  ∃!wreu 3144  ∃*wrmo 3145   class class class wbr 5062  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529  ici 10531   · cmul 10534  cle 10668  2c2 11684  +crp 12382  cexp 13422  cre 14449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453
This theorem is referenced by:  resqrtcl  14606  resqrtthlem  14607
  Copyright terms: Public domain W3C validator