![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resqreu | Structured version Visualization version GIF version |
Description: Existence and uniqueness for the real square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) |
Ref | Expression |
---|---|
resqreu | โข ((๐ด โ โ โง 0 โค ๐ด) โ โ!๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrex 15201 | . . 3 โข ((๐ด โ โ โง 0 โค ๐ด) โ โ๐ฅ โ โ (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) | |
2 | recn 11199 | . . . . . 6 โข (๐ฅ โ โ โ ๐ฅ โ โ) | |
3 | 2 | adantr 480 | . . . . 5 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ ๐ฅ โ โ) |
4 | simprr 770 | . . . . . 6 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ (๐ฅโ2) = ๐ด) | |
5 | rere 15073 | . . . . . . . . 9 โข (๐ฅ โ โ โ (โโ๐ฅ) = ๐ฅ) | |
6 | 5 | breq2d 5153 | . . . . . . . 8 โข (๐ฅ โ โ โ (0 โค (โโ๐ฅ) โ 0 โค ๐ฅ)) |
7 | 6 | biimpar 477 | . . . . . . 7 โข ((๐ฅ โ โ โง 0 โค ๐ฅ) โ 0 โค (โโ๐ฅ)) |
8 | 7 | adantrr 714 | . . . . . 6 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ 0 โค (โโ๐ฅ)) |
9 | rennim 15190 | . . . . . . 7 โข (๐ฅ โ โ โ (i ยท ๐ฅ) โ โ+) | |
10 | 9 | adantr 480 | . . . . . 6 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ (i ยท ๐ฅ) โ โ+) |
11 | 4, 8, 10 | 3jca 1125 | . . . . 5 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
12 | 3, 11 | jca 511 | . . . 4 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ (๐ฅ โ โ โง ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+))) |
13 | 12 | reximi2 3073 | . . 3 โข (โ๐ฅ โ โ (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด) โ โ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
14 | 1, 13 | syl 17 | . 2 โข ((๐ด โ โ โง 0 โค ๐ด) โ โ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
15 | recn 11199 | . . . 4 โข (๐ด โ โ โ ๐ด โ โ) | |
16 | 15 | adantr 480 | . . 3 โข ((๐ด โ โ โง 0 โค ๐ด) โ ๐ด โ โ) |
17 | sqrmo 15202 | . . 3 โข (๐ด โ โ โ โ*๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) | |
18 | 16, 17 | syl 17 | . 2 โข ((๐ด โ โ โง 0 โค ๐ด) โ โ*๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
19 | reu5 3372 | . 2 โข (โ!๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+) โ (โ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+) โง โ*๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+))) | |
20 | 14, 18, 19 | sylanbrc 582 | 1 โข ((๐ด โ โ โง 0 โค ๐ด) โ โ!๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 โง w3a 1084 = wceq 1533 โ wcel 2098 โ wnel 3040 โwrex 3064 โ!wreu 3368 โ*wrmo 3369 class class class wbr 5141 โcfv 6536 (class class class)co 7404 โcc 11107 โcr 11108 0cc0 11109 ici 11111 ยท cmul 11114 โค cle 11250 2c2 12268 โ+crp 12977 โcexp 14030 โcre 15048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-seq 13970 df-exp 14031 df-cj 15050 df-re 15051 df-im 15052 |
This theorem is referenced by: resqrtcl 15204 resqrtthlem 15205 |
Copyright terms: Public domain | W3C validator |