![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resqreu | Structured version Visualization version GIF version |
Description: Existence and uniqueness for the real square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) |
Ref | Expression |
---|---|
resqreu | โข ((๐ด โ โ โง 0 โค ๐ด) โ โ!๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrex 15144 | . . 3 โข ((๐ด โ โ โง 0 โค ๐ด) โ โ๐ฅ โ โ (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) | |
2 | recn 11149 | . . . . . 6 โข (๐ฅ โ โ โ ๐ฅ โ โ) | |
3 | 2 | adantr 482 | . . . . 5 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ ๐ฅ โ โ) |
4 | simprr 772 | . . . . . 6 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ (๐ฅโ2) = ๐ด) | |
5 | rere 15016 | . . . . . . . . 9 โข (๐ฅ โ โ โ (โโ๐ฅ) = ๐ฅ) | |
6 | 5 | breq2d 5121 | . . . . . . . 8 โข (๐ฅ โ โ โ (0 โค (โโ๐ฅ) โ 0 โค ๐ฅ)) |
7 | 6 | biimpar 479 | . . . . . . 7 โข ((๐ฅ โ โ โง 0 โค ๐ฅ) โ 0 โค (โโ๐ฅ)) |
8 | 7 | adantrr 716 | . . . . . 6 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ 0 โค (โโ๐ฅ)) |
9 | rennim 15133 | . . . . . . 7 โข (๐ฅ โ โ โ (i ยท ๐ฅ) โ โ+) | |
10 | 9 | adantr 482 | . . . . . 6 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ (i ยท ๐ฅ) โ โ+) |
11 | 4, 8, 10 | 3jca 1129 | . . . . 5 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
12 | 3, 11 | jca 513 | . . . 4 โข ((๐ฅ โ โ โง (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด)) โ (๐ฅ โ โ โง ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+))) |
13 | 12 | reximi2 3079 | . . 3 โข (โ๐ฅ โ โ (0 โค ๐ฅ โง (๐ฅโ2) = ๐ด) โ โ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
14 | 1, 13 | syl 17 | . 2 โข ((๐ด โ โ โง 0 โค ๐ด) โ โ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
15 | recn 11149 | . . . 4 โข (๐ด โ โ โ ๐ด โ โ) | |
16 | 15 | adantr 482 | . . 3 โข ((๐ด โ โ โง 0 โค ๐ด) โ ๐ด โ โ) |
17 | sqrmo 15145 | . . 3 โข (๐ด โ โ โ โ*๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) | |
18 | 16, 17 | syl 17 | . 2 โข ((๐ด โ โ โง 0 โค ๐ด) โ โ*๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
19 | reu5 3354 | . 2 โข (โ!๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+) โ (โ๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+) โง โ*๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+))) | |
20 | 14, 18, 19 | sylanbrc 584 | 1 โข ((๐ด โ โ โง 0 โค ๐ด) โ โ!๐ฅ โ โ ((๐ฅโ2) = ๐ด โง 0 โค (โโ๐ฅ) โง (i ยท ๐ฅ) โ โ+)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 โง w3a 1088 = wceq 1542 โ wcel 2107 โ wnel 3046 โwrex 3070 โ!wreu 3350 โ*wrmo 3351 class class class wbr 5109 โcfv 6500 (class class class)co 7361 โcc 11057 โcr 11058 0cc0 11059 ici 11061 ยท cmul 11064 โค cle 11198 2c2 12216 โ+crp 12923 โcexp 13976 โcre 14991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-pre-sup 11137 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-sup 9386 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-nn 12162 df-2 12224 df-3 12225 df-n0 12422 df-z 12508 df-uz 12772 df-rp 12924 df-seq 13916 df-exp 13977 df-cj 14993 df-re 14994 df-im 14995 |
This theorem is referenced by: resqrtcl 15147 resqrtthlem 15148 |
Copyright terms: Public domain | W3C validator |