MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass2 Structured version   Visualization version   GIF version

Theorem mulgass2 19755
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass2.b 𝐵 = (Base‘𝑅)
mulgass2.m · = (.g𝑅)
mulgass2.t × = (.r𝑅)
Assertion
Ref Expression
mulgass2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))

Proof of Theorem mulgass2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋))
21oveq1d 7270 . . . . . 6 (𝑥 = 0 → ((𝑥 · 𝑋) × 𝑌) = ((0 · 𝑋) × 𝑌))
3 oveq1 7262 . . . . . 6 (𝑥 = 0 → (𝑥 · (𝑋 × 𝑌)) = (0 · (𝑋 × 𝑌)))
42, 3eqeq12d 2754 . . . . 5 (𝑥 = 0 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌))))
5 oveq1 7262 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
65oveq1d 7270 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((𝑦 · 𝑋) × 𝑌))
7 oveq1 7262 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · (𝑋 × 𝑌)) = (𝑦 · (𝑋 × 𝑌)))
86, 7eqeq12d 2754 . . . . 5 (𝑥 = 𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))))
9 oveq1 7262 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋))
109oveq1d 7270 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) × 𝑌) = (((𝑦 + 1) · 𝑋) × 𝑌))
11 oveq1 7262 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 · (𝑋 × 𝑌)) = ((𝑦 + 1) · (𝑋 × 𝑌)))
1210, 11eqeq12d 2754 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))
13 oveq1 7262 . . . . . . 7 (𝑥 = -𝑦 → (𝑥 · 𝑋) = (-𝑦 · 𝑋))
1413oveq1d 7270 . . . . . 6 (𝑥 = -𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((-𝑦 · 𝑋) × 𝑌))
15 oveq1 7262 . . . . . 6 (𝑥 = -𝑦 → (𝑥 · (𝑋 × 𝑌)) = (-𝑦 · (𝑋 × 𝑌)))
1614, 15eqeq12d 2754 . . . . 5 (𝑥 = -𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌))))
17 oveq1 7262 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋))
1817oveq1d 7270 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 · 𝑋) × 𝑌) = ((𝑁 · 𝑋) × 𝑌))
19 oveq1 7262 . . . . . 6 (𝑥 = 𝑁 → (𝑥 · (𝑋 × 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
2018, 19eqeq12d 2754 . . . . 5 (𝑥 = 𝑁 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
21 mulgass2.b . . . . . . . 8 𝐵 = (Base‘𝑅)
22 mulgass2.t . . . . . . . 8 × = (.r𝑅)
23 eqid 2738 . . . . . . . 8 (0g𝑅) = (0g𝑅)
2421, 22, 23ringlz 19741 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((0g𝑅) × 𝑌) = (0g𝑅))
25243adant3 1130 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0g𝑅) × 𝑌) = (0g𝑅))
26 simp3 1136 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → 𝑋𝐵)
27 mulgass2.m . . . . . . . . 9 · = (.g𝑅)
2821, 23, 27mulg0 18622 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝑅))
2926, 28syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (0 · 𝑋) = (0g𝑅))
3029oveq1d 7270 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0 · 𝑋) × 𝑌) = ((0g𝑅) × 𝑌))
3121, 22ringcl 19715 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 × 𝑌) ∈ 𝐵)
32313com23 1124 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑋 × 𝑌) ∈ 𝐵)
3321, 23, 27mulg0 18622 . . . . . . 7 ((𝑋 × 𝑌) ∈ 𝐵 → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3432, 33syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3525, 30, 343eqtr4d 2788 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌)))
36 oveq1 7262 . . . . . . 7 (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
37 simpl1 1189 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Ring)
38 ringgrp 19703 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3937, 38syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Grp)
40 nn0z 12273 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
4140adantl 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
4226adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑋𝐵)
43 eqid 2738 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
4421, 27, 43mulgp1 18651 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4539, 41, 42, 44syl3anc 1369 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4645oveq1d 7270 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌))
47383ad2ant1 1131 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → 𝑅 ∈ Grp)
4847adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Grp)
4921, 27mulgcl 18636 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5048, 41, 42, 49syl3anc 1369 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (𝑦 · 𝑋) ∈ 𝐵)
51 simpl2 1190 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑌𝐵)
5221, 43, 22ringdir 19721 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦 · 𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5337, 50, 42, 51, 52syl13anc 1370 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5446, 53eqtrd 2778 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5532adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (𝑋 × 𝑌) ∈ 𝐵)
5621, 27, 43mulgp1 18651 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝑋 × 𝑌) ∈ 𝐵) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
5739, 41, 55, 56syl3anc 1369 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
5854, 57eqeq12d 2754 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)) ↔ (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌))))
5936, 58syl5ibr 245 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))
6059ex 412 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑦 ∈ ℕ0 → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)))))
61 fveq2 6756 . . . . . . 7 (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
6247adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑅 ∈ Grp)
63 nnz 12272 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
6463adantl 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
6526adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑋𝐵)
66 eqid 2738 . . . . . . . . . . . 12 (invg𝑅) = (invg𝑅)
6721, 27, 66mulgneg 18637 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = ((invg𝑅)‘(𝑦 · 𝑋)))
6862, 64, 65, 67syl3anc 1369 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (-𝑦 · 𝑋) = ((invg𝑅)‘(𝑦 · 𝑋)))
6968oveq1d 7270 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → ((-𝑦 · 𝑋) × 𝑌) = (((invg𝑅)‘(𝑦 · 𝑋)) × 𝑌))
70 simpl1 1189 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑅 ∈ Ring)
7162, 64, 65, 49syl3anc 1369 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝑋) ∈ 𝐵)
72 simpl2 1190 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑌𝐵)
7321, 22, 66, 70, 71, 72ringmneg1 19750 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((invg𝑅)‘(𝑦 · 𝑋)) × 𝑌) = ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)))
7469, 73eqtrd 2778 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → ((-𝑦 · 𝑋) × 𝑌) = ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)))
7532adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (𝑋 × 𝑌) ∈ 𝐵)
7621, 27, 66mulgneg 18637 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝑋 × 𝑌) ∈ 𝐵) → (-𝑦 · (𝑋 × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
7762, 64, 75, 76syl3anc 1369 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑋 × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
7874, 77eqeq12d 2754 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌)) ↔ ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌)))))
7961, 78syl5ibr 245 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌))))
8079ex 412 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑦 ∈ ℕ → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌)))))
814, 8, 12, 16, 20, 35, 60, 80zindd 12351 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
82813exp 1117 . . 3 (𝑅 ∈ Ring → (𝑌𝐵 → (𝑋𝐵 → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))))
8382com24 95 . 2 (𝑅 ∈ Ring → (𝑁 ∈ ℤ → (𝑋𝐵 → (𝑌𝐵 → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))))
84833imp2 1347 1 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  -cneg 11136  cn 11903  0cn0 12163  cz 12249  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  .gcmg 18615  Ringcrg 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mulg 18616  df-mgp 19636  df-ur 19653  df-ring 19700
This theorem is referenced by:  mulgass3  19794  mulgrhm  20611  zlmassa  21016  dvdschrmulg  31385  isarchiofld  31418  elrspunidl  31508
  Copyright terms: Public domain W3C validator