MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass2 Structured version   Visualization version   GIF version

Theorem mulgass2 19840
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass2.b 𝐵 = (Base‘𝑅)
mulgass2.m · = (.g𝑅)
mulgass2.t × = (.r𝑅)
Assertion
Ref Expression
mulgass2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))

Proof of Theorem mulgass2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋))
21oveq1d 7290 . . . . . 6 (𝑥 = 0 → ((𝑥 · 𝑋) × 𝑌) = ((0 · 𝑋) × 𝑌))
3 oveq1 7282 . . . . . 6 (𝑥 = 0 → (𝑥 · (𝑋 × 𝑌)) = (0 · (𝑋 × 𝑌)))
42, 3eqeq12d 2754 . . . . 5 (𝑥 = 0 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌))))
5 oveq1 7282 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
65oveq1d 7290 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((𝑦 · 𝑋) × 𝑌))
7 oveq1 7282 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · (𝑋 × 𝑌)) = (𝑦 · (𝑋 × 𝑌)))
86, 7eqeq12d 2754 . . . . 5 (𝑥 = 𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))))
9 oveq1 7282 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋))
109oveq1d 7290 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) × 𝑌) = (((𝑦 + 1) · 𝑋) × 𝑌))
11 oveq1 7282 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 · (𝑋 × 𝑌)) = ((𝑦 + 1) · (𝑋 × 𝑌)))
1210, 11eqeq12d 2754 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))
13 oveq1 7282 . . . . . . 7 (𝑥 = -𝑦 → (𝑥 · 𝑋) = (-𝑦 · 𝑋))
1413oveq1d 7290 . . . . . 6 (𝑥 = -𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((-𝑦 · 𝑋) × 𝑌))
15 oveq1 7282 . . . . . 6 (𝑥 = -𝑦 → (𝑥 · (𝑋 × 𝑌)) = (-𝑦 · (𝑋 × 𝑌)))
1614, 15eqeq12d 2754 . . . . 5 (𝑥 = -𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌))))
17 oveq1 7282 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋))
1817oveq1d 7290 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 · 𝑋) × 𝑌) = ((𝑁 · 𝑋) × 𝑌))
19 oveq1 7282 . . . . . 6 (𝑥 = 𝑁 → (𝑥 · (𝑋 × 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
2018, 19eqeq12d 2754 . . . . 5 (𝑥 = 𝑁 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
21 mulgass2.b . . . . . . . 8 𝐵 = (Base‘𝑅)
22 mulgass2.t . . . . . . . 8 × = (.r𝑅)
23 eqid 2738 . . . . . . . 8 (0g𝑅) = (0g𝑅)
2421, 22, 23ringlz 19826 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((0g𝑅) × 𝑌) = (0g𝑅))
25243adant3 1131 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0g𝑅) × 𝑌) = (0g𝑅))
26 simp3 1137 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → 𝑋𝐵)
27 mulgass2.m . . . . . . . . 9 · = (.g𝑅)
2821, 23, 27mulg0 18707 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝑅))
2926, 28syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (0 · 𝑋) = (0g𝑅))
3029oveq1d 7290 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0 · 𝑋) × 𝑌) = ((0g𝑅) × 𝑌))
3121, 22ringcl 19800 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 × 𝑌) ∈ 𝐵)
32313com23 1125 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑋 × 𝑌) ∈ 𝐵)
3321, 23, 27mulg0 18707 . . . . . . 7 ((𝑋 × 𝑌) ∈ 𝐵 → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3432, 33syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3525, 30, 343eqtr4d 2788 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌)))
36 oveq1 7282 . . . . . . 7 (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
37 simpl1 1190 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Ring)
38 ringgrp 19788 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3937, 38syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Grp)
40 nn0z 12343 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
4140adantl 482 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
4226adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑋𝐵)
43 eqid 2738 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
4421, 27, 43mulgp1 18736 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4539, 41, 42, 44syl3anc 1370 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4645oveq1d 7290 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌))
47383ad2ant1 1132 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → 𝑅 ∈ Grp)
4847adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Grp)
4921, 27mulgcl 18721 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5048, 41, 42, 49syl3anc 1370 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (𝑦 · 𝑋) ∈ 𝐵)
51 simpl2 1191 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑌𝐵)
5221, 43, 22ringdir 19806 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦 · 𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5337, 50, 42, 51, 52syl13anc 1371 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5446, 53eqtrd 2778 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5532adantr 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (𝑋 × 𝑌) ∈ 𝐵)
5621, 27, 43mulgp1 18736 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝑋 × 𝑌) ∈ 𝐵) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
5739, 41, 55, 56syl3anc 1370 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
5854, 57eqeq12d 2754 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)) ↔ (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌))))
5936, 58syl5ibr 245 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))
6059ex 413 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑦 ∈ ℕ0 → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)))))
61 fveq2 6774 . . . . . . 7 (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
6247adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑅 ∈ Grp)
63 nnz 12342 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
6463adantl 482 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
6526adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑋𝐵)
66 eqid 2738 . . . . . . . . . . . 12 (invg𝑅) = (invg𝑅)
6721, 27, 66mulgneg 18722 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = ((invg𝑅)‘(𝑦 · 𝑋)))
6862, 64, 65, 67syl3anc 1370 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (-𝑦 · 𝑋) = ((invg𝑅)‘(𝑦 · 𝑋)))
6968oveq1d 7290 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → ((-𝑦 · 𝑋) × 𝑌) = (((invg𝑅)‘(𝑦 · 𝑋)) × 𝑌))
70 simpl1 1190 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑅 ∈ Ring)
7162, 64, 65, 49syl3anc 1370 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝑋) ∈ 𝐵)
72 simpl2 1191 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑌𝐵)
7321, 22, 66, 70, 71, 72ringmneg1 19835 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((invg𝑅)‘(𝑦 · 𝑋)) × 𝑌) = ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)))
7469, 73eqtrd 2778 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → ((-𝑦 · 𝑋) × 𝑌) = ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)))
7532adantr 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (𝑋 × 𝑌) ∈ 𝐵)
7621, 27, 66mulgneg 18722 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝑋 × 𝑌) ∈ 𝐵) → (-𝑦 · (𝑋 × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
7762, 64, 75, 76syl3anc 1370 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑋 × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
7874, 77eqeq12d 2754 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌)) ↔ ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌)))))
7961, 78syl5ibr 245 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌))))
8079ex 413 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑦 ∈ ℕ → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌)))))
814, 8, 12, 16, 20, 35, 60, 80zindd 12421 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
82813exp 1118 . . 3 (𝑅 ∈ Ring → (𝑌𝐵 → (𝑋𝐵 → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))))
8382com24 95 . 2 (𝑅 ∈ Ring → (𝑁 ∈ ℤ → (𝑋𝐵 → (𝑌𝐵 → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))))
84833imp2 1348 1 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  -cneg 11206  cn 11973  0cn0 12233  cz 12319  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578  .gcmg 18700  Ringcrg 19783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mulg 18701  df-mgp 19721  df-ur 19738  df-ring 19785
This theorem is referenced by:  mulgass3  19879  mulgrhm  20699  zlmassa  21106  dvdschrmulg  31483  isarchiofld  31516  elrspunidl  31606
  Copyright terms: Public domain W3C validator