MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass2 Structured version   Visualization version   GIF version

Theorem mulgass2 20332
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass2.b 𝐵 = (Base‘𝑅)
mulgass2.m · = (.g𝑅)
mulgass2.t × = (.r𝑅)
Assertion
Ref Expression
mulgass2 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))

Proof of Theorem mulgass2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝑋) = (0 · 𝑋))
21oveq1d 7463 . . . . . 6 (𝑥 = 0 → ((𝑥 · 𝑋) × 𝑌) = ((0 · 𝑋) × 𝑌))
3 oveq1 7455 . . . . . 6 (𝑥 = 0 → (𝑥 · (𝑋 × 𝑌)) = (0 · (𝑋 × 𝑌)))
42, 3eqeq12d 2756 . . . . 5 (𝑥 = 0 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌))))
5 oveq1 7455 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
65oveq1d 7463 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((𝑦 · 𝑋) × 𝑌))
7 oveq1 7455 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · (𝑋 × 𝑌)) = (𝑦 · (𝑋 × 𝑌)))
86, 7eqeq12d 2756 . . . . 5 (𝑥 = 𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌))))
9 oveq1 7455 . . . . . . 7 (𝑥 = (𝑦 + 1) → (𝑥 · 𝑋) = ((𝑦 + 1) · 𝑋))
109oveq1d 7463 . . . . . 6 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝑋) × 𝑌) = (((𝑦 + 1) · 𝑋) × 𝑌))
11 oveq1 7455 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 · (𝑋 × 𝑌)) = ((𝑦 + 1) · (𝑋 × 𝑌)))
1210, 11eqeq12d 2756 . . . . 5 (𝑥 = (𝑦 + 1) → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))
13 oveq1 7455 . . . . . . 7 (𝑥 = -𝑦 → (𝑥 · 𝑋) = (-𝑦 · 𝑋))
1413oveq1d 7463 . . . . . 6 (𝑥 = -𝑦 → ((𝑥 · 𝑋) × 𝑌) = ((-𝑦 · 𝑋) × 𝑌))
15 oveq1 7455 . . . . . 6 (𝑥 = -𝑦 → (𝑥 · (𝑋 × 𝑌)) = (-𝑦 · (𝑋 × 𝑌)))
1614, 15eqeq12d 2756 . . . . 5 (𝑥 = -𝑦 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌))))
17 oveq1 7455 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝑋) = (𝑁 · 𝑋))
1817oveq1d 7463 . . . . . 6 (𝑥 = 𝑁 → ((𝑥 · 𝑋) × 𝑌) = ((𝑁 · 𝑋) × 𝑌))
19 oveq1 7455 . . . . . 6 (𝑥 = 𝑁 → (𝑥 · (𝑋 × 𝑌)) = (𝑁 · (𝑋 × 𝑌)))
2018, 19eqeq12d 2756 . . . . 5 (𝑥 = 𝑁 → (((𝑥 · 𝑋) × 𝑌) = (𝑥 · (𝑋 × 𝑌)) ↔ ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
21 mulgass2.b . . . . . . . 8 𝐵 = (Base‘𝑅)
22 mulgass2.t . . . . . . . 8 × = (.r𝑅)
23 eqid 2740 . . . . . . . 8 (0g𝑅) = (0g𝑅)
2421, 22, 23ringlz 20316 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ((0g𝑅) × 𝑌) = (0g𝑅))
25243adant3 1132 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0g𝑅) × 𝑌) = (0g𝑅))
26 simp3 1138 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → 𝑋𝐵)
27 mulgass2.m . . . . . . . . 9 · = (.g𝑅)
2821, 23, 27mulg0 19114 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝑅))
2926, 28syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (0 · 𝑋) = (0g𝑅))
3029oveq1d 7463 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0 · 𝑋) × 𝑌) = ((0g𝑅) × 𝑌))
3121, 22ringcl 20277 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 × 𝑌) ∈ 𝐵)
32313com23 1126 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑋 × 𝑌) ∈ 𝐵)
3321, 23, 27mulg0 19114 . . . . . . 7 ((𝑋 × 𝑌) ∈ 𝐵 → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3432, 33syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (0 · (𝑋 × 𝑌)) = (0g𝑅))
3525, 30, 343eqtr4d 2790 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → ((0 · 𝑋) × 𝑌) = (0 · (𝑋 × 𝑌)))
36 oveq1 7455 . . . . . . 7 (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
37 simpl1 1191 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Ring)
38 ringgrp 20265 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
3937, 38syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Grp)
40 nn0z 12664 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
4140adantl 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
4226adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑋𝐵)
43 eqid 2740 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
4421, 27, 43mulgp1 19147 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4539, 41, 42, 44syl3anc 1371 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)𝑋))
4645oveq1d 7463 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌))
47383ad2ant1 1133 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → 𝑅 ∈ Grp)
4847adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ Grp)
4921, 27mulgcl 19131 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
5048, 41, 42, 49syl3anc 1371 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (𝑦 · 𝑋) ∈ 𝐵)
51 simpl2 1192 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → 𝑌𝐵)
5221, 43, 22ringdir 20288 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑦 · 𝑋) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5337, 50, 42, 51, 52syl13anc 1372 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 · 𝑋)(+g𝑅)𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5446, 53eqtrd 2780 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) · 𝑋) × 𝑌) = (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)))
5532adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (𝑋 × 𝑌) ∈ 𝐵)
5621, 27, 43mulgp1 19147 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝑋 × 𝑌) ∈ 𝐵) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
5739, 41, 55, 56syl3anc 1371 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · (𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌)))
5854, 57eqeq12d 2756 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → ((((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)) ↔ (((𝑦 · 𝑋) × 𝑌)(+g𝑅)(𝑋 × 𝑌)) = ((𝑦 · (𝑋 × 𝑌))(+g𝑅)(𝑋 × 𝑌))))
5936, 58imbitrrid 246 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ0) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌))))
6059ex 412 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑦 ∈ ℕ0 → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → (((𝑦 + 1) · 𝑋) × 𝑌) = ((𝑦 + 1) · (𝑋 × 𝑌)))))
61 fveq2 6920 . . . . . . 7 (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
6247adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑅 ∈ Grp)
63 nnz 12660 . . . . . . . . . . . 12 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
6463adantl 481 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
6526adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑋𝐵)
66 eqid 2740 . . . . . . . . . . . 12 (invg𝑅) = (invg𝑅)
6721, 27, 66mulgneg 19132 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = ((invg𝑅)‘(𝑦 · 𝑋)))
6862, 64, 65, 67syl3anc 1371 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (-𝑦 · 𝑋) = ((invg𝑅)‘(𝑦 · 𝑋)))
6968oveq1d 7463 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → ((-𝑦 · 𝑋) × 𝑌) = (((invg𝑅)‘(𝑦 · 𝑋)) × 𝑌))
70 simpl1 1191 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑅 ∈ Ring)
7162, 64, 65, 49syl3anc 1371 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝑋) ∈ 𝐵)
72 simpl2 1192 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → 𝑌𝐵)
7321, 22, 66, 70, 71, 72ringmneg1 20327 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((invg𝑅)‘(𝑦 · 𝑋)) × 𝑌) = ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)))
7469, 73eqtrd 2780 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → ((-𝑦 · 𝑋) × 𝑌) = ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)))
7532adantr 480 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (𝑋 × 𝑌) ∈ 𝐵)
7621, 27, 66mulgneg 19132 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ (𝑋 × 𝑌) ∈ 𝐵) → (-𝑦 · (𝑋 × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
7762, 64, 75, 76syl3anc 1371 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑋 × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌))))
7874, 77eqeq12d 2756 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌)) ↔ ((invg𝑅)‘((𝑦 · 𝑋) × 𝑌)) = ((invg𝑅)‘(𝑦 · (𝑋 × 𝑌)))))
7961, 78imbitrrid 246 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) ∧ 𝑦 ∈ ℕ) → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌))))
8079ex 412 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑦 ∈ ℕ → (((𝑦 · 𝑋) × 𝑌) = (𝑦 · (𝑋 × 𝑌)) → ((-𝑦 · 𝑋) × 𝑌) = (-𝑦 · (𝑋 × 𝑌)))))
814, 8, 12, 16, 20, 35, 60, 80zindd 12744 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑋𝐵) → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))
82813exp 1119 . . 3 (𝑅 ∈ Ring → (𝑌𝐵 → (𝑋𝐵 → (𝑁 ∈ ℤ → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))))
8382com24 95 . 2 (𝑅 ∈ Ring → (𝑁 ∈ ℤ → (𝑋𝐵 → (𝑌𝐵 → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))))))
84833imp2 1349 1 ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  -cneg 11521  cn 12293  0cn0 12553  cz 12639  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  Grpcgrp 18973  invgcminusg 18974  .gcmg 19107  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-mulg 19108  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262
This theorem is referenced by:  mulgass3  20379  mulgrhm  21511  dvdschrmulg  21566  zlmassa  21946  psdmul  22193  isarchiofld  33312  elrspunidl  33421
  Copyright terms: Public domain W3C validator