MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringnegl Structured version   Visualization version   GIF version

Theorem ringnegl 20211
Description: Negation in a ring is the same as left multiplication by -1. (rngonegmn1l 37935 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b 𝐵 = (Base‘𝑅)
ringnegl.t · = (.r𝑅)
ringnegl.u 1 = (1r𝑅)
ringnegl.n 𝑁 = (invg𝑅)
ringnegl.r (𝜑𝑅 ∈ Ring)
ringnegl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ringnegl (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))

Proof of Theorem ringnegl
StepHypRef Expression
1 ringnegl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 ringnegl.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 ringnegl.u . . . . . . 7 1 = (1r𝑅)
42, 3ringidcl 20174 . . . . . 6 (𝑅 ∈ Ring → 1𝐵)
51, 4syl 17 . . . . 5 (𝜑1𝐵)
6 ringgrp 20147 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
71, 6syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
8 ringnegl.n . . . . . . 7 𝑁 = (invg𝑅)
92, 8grpinvcl 18919 . . . . . 6 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝑁1 ) ∈ 𝐵)
107, 5, 9syl2anc 584 . . . . 5 (𝜑 → (𝑁1 ) ∈ 𝐵)
11 ringnegl.x . . . . 5 (𝜑𝑋𝐵)
12 eqid 2729 . . . . . 6 (+g𝑅) = (+g𝑅)
13 ringnegl.t . . . . . 6 · = (.r𝑅)
142, 12, 13ringdir 20171 . . . . 5 ((𝑅 ∈ Ring ∧ ( 1𝐵 ∧ (𝑁1 ) ∈ 𝐵𝑋𝐵)) → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)))
151, 5, 10, 11, 14syl13anc 1374 . . . 4 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)))
16 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
172, 12, 16, 8grprinv 18922 . . . . . . 7 ((𝑅 ∈ Grp ∧ 1𝐵) → ( 1 (+g𝑅)(𝑁1 )) = (0g𝑅))
187, 5, 17syl2anc 584 . . . . . 6 (𝜑 → ( 1 (+g𝑅)(𝑁1 )) = (0g𝑅))
1918oveq1d 7402 . . . . 5 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = ((0g𝑅) · 𝑋))
202, 13, 16ringlz 20202 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((0g𝑅) · 𝑋) = (0g𝑅))
211, 11, 20syl2anc 584 . . . . 5 (𝜑 → ((0g𝑅) · 𝑋) = (0g𝑅))
2219, 21eqtrd 2764 . . . 4 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (0g𝑅))
232, 13, 3ringlidm 20178 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
241, 11, 23syl2anc 584 . . . . 5 (𝜑 → ( 1 · 𝑋) = 𝑋)
2524oveq1d 7402 . . . 4 (𝜑 → (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)) = (𝑋(+g𝑅)((𝑁1 ) · 𝑋)))
2615, 22, 253eqtr3rd 2773 . . 3 (𝜑 → (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅))
272, 13ringcl 20159 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁1 ) ∈ 𝐵𝑋𝐵) → ((𝑁1 ) · 𝑋) ∈ 𝐵)
281, 10, 11, 27syl3anc 1373 . . . 4 (𝜑 → ((𝑁1 ) · 𝑋) ∈ 𝐵)
292, 12, 16, 8grpinvid1 18923 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵 ∧ ((𝑁1 ) · 𝑋) ∈ 𝐵) → ((𝑁𝑋) = ((𝑁1 ) · 𝑋) ↔ (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅)))
307, 11, 28, 29syl3anc 1373 . . 3 (𝜑 → ((𝑁𝑋) = ((𝑁1 ) · 𝑋) ↔ (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅)))
3126, 30mpbird 257 . 2 (𝜑 → (𝑁𝑋) = ((𝑁1 ) · 𝑋))
3231eqcomd 2735 1 (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866  1rcur 20090  Ringcrg 20142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144
This theorem is referenced by:  ringmneg1  20213  dvdsrneg  20279  abvneg  20735  lmodvsneg  20812  lmodsubvs  20824  lmodsubdi  20825  lmodsubdir  20826  lmodvsinv  20943  mplind  21977  mdetralt  22495  m2detleiblem7  22514  lflsub  39060  baerlem3lem1  41701
  Copyright terms: Public domain W3C validator