MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringnegl Structured version   Visualization version   GIF version

Theorem ringnegl 20221
Description: Negation in a ring is the same as left multiplication by -1. (rngonegmn1l 37987 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b 𝐵 = (Base‘𝑅)
ringnegl.t · = (.r𝑅)
ringnegl.u 1 = (1r𝑅)
ringnegl.n 𝑁 = (invg𝑅)
ringnegl.r (𝜑𝑅 ∈ Ring)
ringnegl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ringnegl (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))

Proof of Theorem ringnegl
StepHypRef Expression
1 ringnegl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 ringnegl.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 ringnegl.u . . . . . . 7 1 = (1r𝑅)
42, 3ringidcl 20184 . . . . . 6 (𝑅 ∈ Ring → 1𝐵)
51, 4syl 17 . . . . 5 (𝜑1𝐵)
6 ringgrp 20157 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
71, 6syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
8 ringnegl.n . . . . . . 7 𝑁 = (invg𝑅)
92, 8grpinvcl 18900 . . . . . 6 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝑁1 ) ∈ 𝐵)
107, 5, 9syl2anc 584 . . . . 5 (𝜑 → (𝑁1 ) ∈ 𝐵)
11 ringnegl.x . . . . 5 (𝜑𝑋𝐵)
12 eqid 2731 . . . . . 6 (+g𝑅) = (+g𝑅)
13 ringnegl.t . . . . . 6 · = (.r𝑅)
142, 12, 13ringdir 20181 . . . . 5 ((𝑅 ∈ Ring ∧ ( 1𝐵 ∧ (𝑁1 ) ∈ 𝐵𝑋𝐵)) → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)))
151, 5, 10, 11, 14syl13anc 1374 . . . 4 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)))
16 eqid 2731 . . . . . . . 8 (0g𝑅) = (0g𝑅)
172, 12, 16, 8grprinv 18903 . . . . . . 7 ((𝑅 ∈ Grp ∧ 1𝐵) → ( 1 (+g𝑅)(𝑁1 )) = (0g𝑅))
187, 5, 17syl2anc 584 . . . . . 6 (𝜑 → ( 1 (+g𝑅)(𝑁1 )) = (0g𝑅))
1918oveq1d 7361 . . . . 5 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = ((0g𝑅) · 𝑋))
202, 13, 16ringlz 20212 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((0g𝑅) · 𝑋) = (0g𝑅))
211, 11, 20syl2anc 584 . . . . 5 (𝜑 → ((0g𝑅) · 𝑋) = (0g𝑅))
2219, 21eqtrd 2766 . . . 4 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (0g𝑅))
232, 13, 3ringlidm 20188 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
241, 11, 23syl2anc 584 . . . . 5 (𝜑 → ( 1 · 𝑋) = 𝑋)
2524oveq1d 7361 . . . 4 (𝜑 → (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)) = (𝑋(+g𝑅)((𝑁1 ) · 𝑋)))
2615, 22, 253eqtr3rd 2775 . . 3 (𝜑 → (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅))
272, 13ringcl 20169 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁1 ) ∈ 𝐵𝑋𝐵) → ((𝑁1 ) · 𝑋) ∈ 𝐵)
281, 10, 11, 27syl3anc 1373 . . . 4 (𝜑 → ((𝑁1 ) · 𝑋) ∈ 𝐵)
292, 12, 16, 8grpinvid1 18904 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵 ∧ ((𝑁1 ) · 𝑋) ∈ 𝐵) → ((𝑁𝑋) = ((𝑁1 ) · 𝑋) ↔ (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅)))
307, 11, 28, 29syl3anc 1373 . . 3 (𝜑 → ((𝑁𝑋) = ((𝑁1 ) · 𝑋) ↔ (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅)))
3126, 30mpbird 257 . 2 (𝜑 → (𝑁𝑋) = ((𝑁1 ) · 𝑋))
3231eqcomd 2737 1 (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847  1rcur 20100  Ringcrg 20152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154
This theorem is referenced by:  ringmneg1  20223  dvdsrneg  20289  abvneg  20742  lmodvsneg  20840  lmodsubvs  20852  lmodsubdi  20853  lmodsubdir  20854  lmodvsinv  20971  mplind  22006  mdetralt  22524  m2detleiblem7  22543  lflsub  39112  baerlem3lem1  41752
  Copyright terms: Public domain W3C validator