MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringnegl Structured version   Visualization version   GIF version

Theorem ringnegl 20325
Description: Negation in a ring is the same as left multiplication by -1. (rngonegmn1l 37901 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b 𝐵 = (Base‘𝑅)
ringnegl.t · = (.r𝑅)
ringnegl.u 1 = (1r𝑅)
ringnegl.n 𝑁 = (invg𝑅)
ringnegl.r (𝜑𝑅 ∈ Ring)
ringnegl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ringnegl (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))

Proof of Theorem ringnegl
StepHypRef Expression
1 ringnegl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 ringnegl.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 ringnegl.u . . . . . . 7 1 = (1r𝑅)
42, 3ringidcl 20289 . . . . . 6 (𝑅 ∈ Ring → 1𝐵)
51, 4syl 17 . . . . 5 (𝜑1𝐵)
6 ringgrp 20265 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
71, 6syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
8 ringnegl.n . . . . . . 7 𝑁 = (invg𝑅)
92, 8grpinvcl 19027 . . . . . 6 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝑁1 ) ∈ 𝐵)
107, 5, 9syl2anc 583 . . . . 5 (𝜑 → (𝑁1 ) ∈ 𝐵)
11 ringnegl.x . . . . 5 (𝜑𝑋𝐵)
12 eqid 2740 . . . . . 6 (+g𝑅) = (+g𝑅)
13 ringnegl.t . . . . . 6 · = (.r𝑅)
142, 12, 13ringdir 20288 . . . . 5 ((𝑅 ∈ Ring ∧ ( 1𝐵 ∧ (𝑁1 ) ∈ 𝐵𝑋𝐵)) → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)))
151, 5, 10, 11, 14syl13anc 1372 . . . 4 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)))
16 eqid 2740 . . . . . . . 8 (0g𝑅) = (0g𝑅)
172, 12, 16, 8grprinv 19030 . . . . . . 7 ((𝑅 ∈ Grp ∧ 1𝐵) → ( 1 (+g𝑅)(𝑁1 )) = (0g𝑅))
187, 5, 17syl2anc 583 . . . . . 6 (𝜑 → ( 1 (+g𝑅)(𝑁1 )) = (0g𝑅))
1918oveq1d 7463 . . . . 5 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = ((0g𝑅) · 𝑋))
202, 13, 16ringlz 20316 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((0g𝑅) · 𝑋) = (0g𝑅))
211, 11, 20syl2anc 583 . . . . 5 (𝜑 → ((0g𝑅) · 𝑋) = (0g𝑅))
2219, 21eqtrd 2780 . . . 4 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (0g𝑅))
232, 13, 3ringlidm 20292 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
241, 11, 23syl2anc 583 . . . . 5 (𝜑 → ( 1 · 𝑋) = 𝑋)
2524oveq1d 7463 . . . 4 (𝜑 → (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)) = (𝑋(+g𝑅)((𝑁1 ) · 𝑋)))
2615, 22, 253eqtr3rd 2789 . . 3 (𝜑 → (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅))
272, 13ringcl 20277 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁1 ) ∈ 𝐵𝑋𝐵) → ((𝑁1 ) · 𝑋) ∈ 𝐵)
281, 10, 11, 27syl3anc 1371 . . . 4 (𝜑 → ((𝑁1 ) · 𝑋) ∈ 𝐵)
292, 12, 16, 8grpinvid1 19031 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵 ∧ ((𝑁1 ) · 𝑋) ∈ 𝐵) → ((𝑁𝑋) = ((𝑁1 ) · 𝑋) ↔ (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅)))
307, 11, 28, 29syl3anc 1371 . . 3 (𝜑 → ((𝑁𝑋) = ((𝑁1 ) · 𝑋) ↔ (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅)))
3126, 30mpbird 257 . 2 (𝜑 → (𝑁𝑋) = ((𝑁1 ) · 𝑋))
3231eqcomd 2746 1 (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  Grpcgrp 18973  invgcminusg 18974  1rcur 20208  Ringcrg 20260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262
This theorem is referenced by:  ringmneg1  20327  dvdsrneg  20396  abvneg  20849  lmodvsneg  20926  lmodsubvs  20938  lmodsubdi  20939  lmodsubdir  20940  lmodvsinv  21058  mplind  22117  mdetralt  22635  m2detleiblem7  22654  lflsub  39023  baerlem3lem1  41664
  Copyright terms: Public domain W3C validator