Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringnegl | Structured version Visualization version GIF version |
Description: Negation in a ring is the same as left multiplication by -1. (rngonegmn1l 36155 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringnegl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringnegl.t | ⊢ · = (.r‘𝑅) |
ringnegl.u | ⊢ 1 = (1r‘𝑅) |
ringnegl.n | ⊢ 𝑁 = (invg‘𝑅) |
ringnegl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringnegl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ringnegl | ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringnegl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
3 | ringnegl.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
4 | 2, 3 | ringidcl 19875 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐵) |
6 | ringgrp 19856 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
8 | ringnegl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
9 | 2, 8 | grpinvcl 18696 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝑁‘ 1 ) ∈ 𝐵) |
10 | 7, 5, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘ 1 ) ∈ 𝐵) |
11 | ringnegl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
12 | eqid 2737 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
13 | ringnegl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
14 | 2, 12, 13 | ringdir 19874 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ ( 1 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
15 | 1, 5, 10, 11, 14 | syl13anc 1371 | . . . 4 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
16 | eqid 2737 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 2, 12, 16, 8 | grprinv 18698 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ( 1 (+g‘𝑅)(𝑁‘ 1 )) = (0g‘𝑅)) |
18 | 7, 5, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ( 1 (+g‘𝑅)(𝑁‘ 1 )) = (0g‘𝑅)) |
19 | 18 | oveq1d 7330 | . . . . 5 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = ((0g‘𝑅) · 𝑋)) |
20 | 2, 13, 16 | ringlz 19894 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
21 | 1, 11, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
22 | 19, 21 | eqtrd 2777 | . . . 4 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (0g‘𝑅)) |
23 | 2, 13, 3 | ringlidm 19878 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
24 | 1, 11, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
25 | 24 | oveq1d 7330 | . . . 4 ⊢ (𝜑 → (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
26 | 15, 22, 25 | 3eqtr3rd 2786 | . . 3 ⊢ (𝜑 → (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅)) |
27 | 2, 13 | ringcl 19868 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) |
28 | 1, 10, 11, 27 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) |
29 | 2, 12, 16, 8 | grpinvid1 18699 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) → ((𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋) ↔ (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅))) |
30 | 7, 11, 28, 29 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋) ↔ (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅))) |
31 | 26, 30 | mpbird 256 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋)) |
32 | 31 | eqcomd 2743 | 1 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 +gcplusg 17032 .rcmulr 17033 0gc0g 17220 Grpcgrp 18646 invgcminusg 18647 1rcur 19805 Ringcrg 19851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-plusg 17045 df-0g 17222 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-grp 18649 df-minusg 18650 df-mgp 19789 df-ur 19806 df-ring 19853 |
This theorem is referenced by: ringmneg1 19903 dvdsrneg 19964 abvneg 20166 lmodvsneg 20239 lmodsubvs 20251 lmodsubdi 20252 lmodsubdir 20253 lmodvsinv 20370 mplind 21350 mdetralt 21829 m2detleiblem7 21848 lflsub 37285 baerlem3lem1 39926 |
Copyright terms: Public domain | W3C validator |