MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringnegl Structured version   Visualization version   GIF version

Theorem ringnegl 19340
Description: Negation in a ring is the same as left multiplication by -1. (rngonegmn1l 35379 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b 𝐵 = (Base‘𝑅)
ringnegl.t · = (.r𝑅)
ringnegl.u 1 = (1r𝑅)
ringnegl.n 𝑁 = (invg𝑅)
ringnegl.r (𝜑𝑅 ∈ Ring)
ringnegl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ringnegl (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))

Proof of Theorem ringnegl
StepHypRef Expression
1 ringnegl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 ringnegl.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 ringnegl.u . . . . . . 7 1 = (1r𝑅)
42, 3ringidcl 19314 . . . . . 6 (𝑅 ∈ Ring → 1𝐵)
51, 4syl 17 . . . . 5 (𝜑1𝐵)
6 ringgrp 19295 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
71, 6syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
8 ringnegl.n . . . . . . 7 𝑁 = (invg𝑅)
92, 8grpinvcl 18143 . . . . . 6 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝑁1 ) ∈ 𝐵)
107, 5, 9syl2anc 587 . . . . 5 (𝜑 → (𝑁1 ) ∈ 𝐵)
11 ringnegl.x . . . . 5 (𝜑𝑋𝐵)
12 eqid 2798 . . . . . 6 (+g𝑅) = (+g𝑅)
13 ringnegl.t . . . . . 6 · = (.r𝑅)
142, 12, 13ringdir 19313 . . . . 5 ((𝑅 ∈ Ring ∧ ( 1𝐵 ∧ (𝑁1 ) ∈ 𝐵𝑋𝐵)) → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)))
151, 5, 10, 11, 14syl13anc 1369 . . . 4 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)))
16 eqid 2798 . . . . . . . 8 (0g𝑅) = (0g𝑅)
172, 12, 16, 8grprinv 18145 . . . . . . 7 ((𝑅 ∈ Grp ∧ 1𝐵) → ( 1 (+g𝑅)(𝑁1 )) = (0g𝑅))
187, 5, 17syl2anc 587 . . . . . 6 (𝜑 → ( 1 (+g𝑅)(𝑁1 )) = (0g𝑅))
1918oveq1d 7150 . . . . 5 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = ((0g𝑅) · 𝑋))
202, 13, 16ringlz 19333 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((0g𝑅) · 𝑋) = (0g𝑅))
211, 11, 20syl2anc 587 . . . . 5 (𝜑 → ((0g𝑅) · 𝑋) = (0g𝑅))
2219, 21eqtrd 2833 . . . 4 (𝜑 → (( 1 (+g𝑅)(𝑁1 )) · 𝑋) = (0g𝑅))
232, 13, 3ringlidm 19317 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
241, 11, 23syl2anc 587 . . . . 5 (𝜑 → ( 1 · 𝑋) = 𝑋)
2524oveq1d 7150 . . . 4 (𝜑 → (( 1 · 𝑋)(+g𝑅)((𝑁1 ) · 𝑋)) = (𝑋(+g𝑅)((𝑁1 ) · 𝑋)))
2615, 22, 253eqtr3rd 2842 . . 3 (𝜑 → (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅))
272, 13ringcl 19307 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁1 ) ∈ 𝐵𝑋𝐵) → ((𝑁1 ) · 𝑋) ∈ 𝐵)
281, 10, 11, 27syl3anc 1368 . . . 4 (𝜑 → ((𝑁1 ) · 𝑋) ∈ 𝐵)
292, 12, 16, 8grpinvid1 18146 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵 ∧ ((𝑁1 ) · 𝑋) ∈ 𝐵) → ((𝑁𝑋) = ((𝑁1 ) · 𝑋) ↔ (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅)))
307, 11, 28, 29syl3anc 1368 . . 3 (𝜑 → ((𝑁𝑋) = ((𝑁1 ) · 𝑋) ↔ (𝑋(+g𝑅)((𝑁1 ) · 𝑋)) = (0g𝑅)))
3126, 30mpbird 260 . 2 (𝜑 → (𝑁𝑋) = ((𝑁1 ) · 𝑋))
3231eqcomd 2804 1 (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096  1rcur 19244  Ringcrg 19290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19233  df-ur 19245  df-ring 19292
This theorem is referenced by:  ringmneg1  19342  dvdsrneg  19400  abvneg  19598  lmodvsneg  19671  lmodsubvs  19683  lmodsubdi  19684  lmodsubdir  19685  lmodvsinv  19801  mplind  20741  mdetralt  21213  m2detleiblem7  21232  lflsub  36363  baerlem3lem1  39003
  Copyright terms: Public domain W3C validator