| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringnegl | Structured version Visualization version GIF version | ||
| Description: Negation in a ring is the same as left multiplication by -1. (rngonegmn1l 37942 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
| Ref | Expression |
|---|---|
| ringnegl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringnegl.t | ⊢ · = (.r‘𝑅) |
| ringnegl.u | ⊢ 1 = (1r‘𝑅) |
| ringnegl.n | ⊢ 𝑁 = (invg‘𝑅) |
| ringnegl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringnegl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringnegl | ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringnegl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringnegl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ringnegl.u | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 4 | 2, 3 | ringidcl 20181 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 6 | ringgrp 20154 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | ringnegl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
| 9 | 2, 8 | grpinvcl 18926 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝑁‘ 1 ) ∈ 𝐵) |
| 10 | 7, 5, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘ 1 ) ∈ 𝐵) |
| 11 | ringnegl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 12 | eqid 2730 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 13 | ringnegl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 14 | 2, 12, 13 | ringdir 20178 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ ( 1 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
| 15 | 1, 5, 10, 11, 14 | syl13anc 1374 | . . . 4 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
| 16 | eqid 2730 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 17 | 2, 12, 16, 8 | grprinv 18929 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ( 1 (+g‘𝑅)(𝑁‘ 1 )) = (0g‘𝑅)) |
| 18 | 7, 5, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ( 1 (+g‘𝑅)(𝑁‘ 1 )) = (0g‘𝑅)) |
| 19 | 18 | oveq1d 7405 | . . . . 5 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = ((0g‘𝑅) · 𝑋)) |
| 20 | 2, 13, 16 | ringlz 20209 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
| 21 | 1, 11, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
| 22 | 19, 21 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → (( 1 (+g‘𝑅)(𝑁‘ 1 )) · 𝑋) = (0g‘𝑅)) |
| 23 | 2, 13, 3 | ringlidm 20185 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
| 24 | 1, 11, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
| 25 | 24 | oveq1d 7405 | . . . 4 ⊢ (𝜑 → (( 1 · 𝑋)(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋))) |
| 26 | 15, 22, 25 | 3eqtr3rd 2774 | . . 3 ⊢ (𝜑 → (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅)) |
| 27 | 2, 13 | ringcl 20166 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) |
| 28 | 1, 10, 11, 27 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) |
| 29 | 2, 12, 16, 8 | grpinvid1 18930 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ((𝑁‘ 1 ) · 𝑋) ∈ 𝐵) → ((𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋) ↔ (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅))) |
| 30 | 7, 11, 28, 29 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋) ↔ (𝑋(+g‘𝑅)((𝑁‘ 1 ) · 𝑋)) = (0g‘𝑅))) |
| 31 | 26, 30 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) = ((𝑁‘ 1 ) · 𝑋)) |
| 32 | 31 | eqcomd 2736 | 1 ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 0gc0g 17409 Grpcgrp 18872 invgcminusg 18873 1rcur 20097 Ringcrg 20149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 |
| This theorem is referenced by: ringmneg1 20220 dvdsrneg 20286 abvneg 20742 lmodvsneg 20819 lmodsubvs 20831 lmodsubdi 20832 lmodsubdir 20833 lmodvsinv 20950 mplind 21984 mdetralt 22502 m2detleiblem7 22521 lflsub 39067 baerlem3lem1 41708 |
| Copyright terms: Public domain | W3C validator |