Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsdi1 Structured version   Visualization version   GIF version

Theorem lflvsdi1 39125
Description: Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfldi.v 𝑉 = (Base‘𝑊)
lfldi.r 𝑅 = (Scalar‘𝑊)
lfldi.k 𝐾 = (Base‘𝑅)
lfldi.p + = (+g𝑅)
lfldi.t · = (.r𝑅)
lfldi.f 𝐹 = (LFnl‘𝑊)
lfldi.w (𝜑𝑊 ∈ LMod)
lfldi.x (𝜑𝑋𝐾)
lfldi1.g (𝜑𝐺𝐹)
lfldi1.h (𝜑𝐻𝐹)
Assertion
Ref Expression
lflvsdi1 (𝜑 → ((𝐺f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐻f · (𝑉 × {𝑋}))))

Proof of Theorem lflvsdi1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfldi.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6836 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lfldi.x . . 3 (𝜑𝑋𝐾)
5 fconst6g 6712 . . 3 (𝑋𝐾 → (𝑉 × {𝑋}):𝑉𝐾)
64, 5syl 17 . 2 (𝜑 → (𝑉 × {𝑋}):𝑉𝐾)
7 lfldi.w . . 3 (𝜑𝑊 ∈ LMod)
8 lfldi1.g . . 3 (𝜑𝐺𝐹)
9 lfldi.r . . . 4 𝑅 = (Scalar‘𝑊)
10 lfldi.k . . . 4 𝐾 = (Base‘𝑅)
11 lfldi.f . . . 4 𝐹 = (LFnl‘𝑊)
129, 10, 1, 11lflf 39110 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
137, 8, 12syl2anc 584 . 2 (𝜑𝐺:𝑉𝐾)
14 lfldi1.h . . 3 (𝜑𝐻𝐹)
159, 10, 1, 11lflf 39110 . . 3 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻:𝑉𝐾)
167, 14, 15syl2anc 584 . 2 (𝜑𝐻:𝑉𝐾)
179lmodring 20801 . . . 4 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
187, 17syl 17 . . 3 (𝜑𝑅 ∈ Ring)
19 lfldi.p . . . 4 + = (+g𝑅)
20 lfldi.t . . . 4 · = (.r𝑅)
2110, 19, 20ringdir 20180 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2218, 21sylan 580 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
233, 6, 13, 16, 22caofdir 7653 1 (𝜑 → ((𝐺f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐻f · (𝑉 × {𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573   × cxp 5612  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164  Ringcrg 20151  LModclmod 20793  LFnlclfn 39104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-map 8752  df-ring 20153  df-lmod 20795  df-lfl 39105
This theorem is referenced by:  ldualvsdi1  39190
  Copyright terms: Public domain W3C validator