Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsdi1 | Structured version Visualization version GIF version |
Description: Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
Ref | Expression |
---|---|
lfldi.v | ⊢ 𝑉 = (Base‘𝑊) |
lfldi.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lfldi.k | ⊢ 𝐾 = (Base‘𝑅) |
lfldi.p | ⊢ + = (+g‘𝑅) |
lfldi.t | ⊢ · = (.r‘𝑅) |
lfldi.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lfldi.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lfldi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
lfldi1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lfldi1.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
Ref | Expression |
---|---|
lflvsdi1 | ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐻 ∘f · (𝑉 × {𝑋})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfldi.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6770 | . . 3 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lfldi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
5 | fconst6g 6647 | . . 3 ⊢ (𝑋 ∈ 𝐾 → (𝑉 × {𝑋}):𝑉⟶𝐾) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝑉 × {𝑋}):𝑉⟶𝐾) |
7 | lfldi.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
8 | lfldi1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
9 | lfldi.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
10 | lfldi.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
11 | lfldi.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
12 | 9, 10, 1, 11 | lflf 37004 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
13 | 7, 8, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
14 | lfldi1.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
15 | 9, 10, 1, 11 | lflf 37004 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶𝐾) |
16 | 7, 14, 15 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐻:𝑉⟶𝐾) |
17 | 9 | lmodring 20046 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
18 | 7, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
19 | lfldi.p | . . . 4 ⊢ + = (+g‘𝑅) | |
20 | lfldi.t | . . . 4 ⊢ · = (.r‘𝑅) | |
21 | 10, 19, 20 | ringdir 19721 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
22 | 18, 21 | sylan 579 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
23 | 3, 6, 13, 16, 22 | caofdir 7551 | 1 ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐻 ∘f · (𝑉 × {𝑋})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 × cxp 5578 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 Ringcrg 19698 LModclmod 20038 LFnlclfn 36998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-map 8575 df-ring 19700 df-lmod 20040 df-lfl 36999 |
This theorem is referenced by: ldualvsdi1 37084 |
Copyright terms: Public domain | W3C validator |