| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsdi1 | Structured version Visualization version GIF version | ||
| Description: Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| Ref | Expression |
|---|---|
| lfldi.v | ⊢ 𝑉 = (Base‘𝑊) |
| lfldi.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lfldi.k | ⊢ 𝐾 = (Base‘𝑅) |
| lfldi.p | ⊢ + = (+g‘𝑅) |
| lfldi.t | ⊢ · = (.r‘𝑅) |
| lfldi.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lfldi.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lfldi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| lfldi1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lfldi1.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lflvsdi1 | ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐻 ∘f · (𝑉 × {𝑋})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfldi.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6875 | . . 3 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lfldi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 5 | fconst6g 6752 | . . 3 ⊢ (𝑋 ∈ 𝐾 → (𝑉 × {𝑋}):𝑉⟶𝐾) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝑉 × {𝑋}):𝑉⟶𝐾) |
| 7 | lfldi.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | lfldi1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 9 | lfldi.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 10 | lfldi.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 11 | lfldi.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 12 | 9, 10, 1, 11 | lflf 39063 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 13 | 7, 8, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
| 14 | lfldi1.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 15 | 9, 10, 1, 11 | lflf 39063 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶𝐾) |
| 16 | 7, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐻:𝑉⟶𝐾) |
| 17 | 9 | lmodring 20781 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 18 | 7, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | lfldi.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 20 | lfldi.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 21 | 10, 19, 20 | ringdir 20178 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 22 | 18, 21 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 23 | 3, 6, 13, 16, 22 | caofdir 7699 | 1 ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐻 ∘f · (𝑉 × {𝑋})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 × cxp 5639 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Scalarcsca 17230 Ringcrg 20149 LModclmod 20773 LFnlclfn 39057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-map 8804 df-ring 20151 df-lmod 20775 df-lfl 39058 |
| This theorem is referenced by: ldualvsdi1 39143 |
| Copyright terms: Public domain | W3C validator |