Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsdi1 | Structured version Visualization version GIF version |
Description: Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
Ref | Expression |
---|---|
lfldi.v | ⊢ 𝑉 = (Base‘𝑊) |
lfldi.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lfldi.k | ⊢ 𝐾 = (Base‘𝑅) |
lfldi.p | ⊢ + = (+g‘𝑅) |
lfldi.t | ⊢ · = (.r‘𝑅) |
lfldi.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lfldi.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lfldi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
lfldi1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lfldi1.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
Ref | Expression |
---|---|
lflvsdi1 | ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐻 ∘f · (𝑉 × {𝑋})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfldi.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6785 | . . 3 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lfldi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
5 | fconst6g 6661 | . . 3 ⊢ (𝑋 ∈ 𝐾 → (𝑉 × {𝑋}):𝑉⟶𝐾) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝑉 × {𝑋}):𝑉⟶𝐾) |
7 | lfldi.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
8 | lfldi1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
9 | lfldi.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
10 | lfldi.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
11 | lfldi.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
12 | 9, 10, 1, 11 | lflf 37073 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
13 | 7, 8, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
14 | lfldi1.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
15 | 9, 10, 1, 11 | lflf 37073 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶𝐾) |
16 | 7, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐻:𝑉⟶𝐾) |
17 | 9 | lmodring 20129 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
18 | 7, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
19 | lfldi.p | . . . 4 ⊢ + = (+g‘𝑅) | |
20 | lfldi.t | . . . 4 ⊢ · = (.r‘𝑅) | |
21 | 10, 19, 20 | ringdir 19804 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
22 | 18, 21 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
23 | 3, 6, 13, 16, 22 | caofdir 7567 | 1 ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐻 ∘f · (𝑉 × {𝑋})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 Vcvv 3431 {csn 4567 × cxp 5588 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 ∘f cof 7525 Basecbs 16910 +gcplusg 16960 .rcmulr 16961 Scalarcsca 16963 Ringcrg 19781 LModclmod 20121 LFnlclfn 37067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-map 8600 df-ring 19783 df-lmod 20123 df-lfl 37068 |
This theorem is referenced by: ldualvsdi1 37153 |
Copyright terms: Public domain | W3C validator |