| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsdi1 | Structured version Visualization version GIF version | ||
| Description: Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| Ref | Expression |
|---|---|
| lfldi.v | ⊢ 𝑉 = (Base‘𝑊) |
| lfldi.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lfldi.k | ⊢ 𝐾 = (Base‘𝑅) |
| lfldi.p | ⊢ + = (+g‘𝑅) |
| lfldi.t | ⊢ · = (.r‘𝑅) |
| lfldi.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lfldi.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lfldi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| lfldi1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lfldi1.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lflvsdi1 | ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐻 ∘f · (𝑉 × {𝑋})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfldi.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6890 | . . 3 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lfldi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 5 | fconst6g 6767 | . . 3 ⊢ (𝑋 ∈ 𝐾 → (𝑉 × {𝑋}):𝑉⟶𝐾) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝑉 × {𝑋}):𝑉⟶𝐾) |
| 7 | lfldi.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 8 | lfldi1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 9 | lfldi.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 10 | lfldi.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 11 | lfldi.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 12 | 9, 10, 1, 11 | lflf 39081 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 13 | 7, 8, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
| 14 | lfldi1.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 15 | 9, 10, 1, 11 | lflf 39081 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶𝐾) |
| 16 | 7, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐻:𝑉⟶𝐾) |
| 17 | 9 | lmodring 20825 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 18 | 7, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | lfldi.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 20 | lfldi.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 21 | 10, 19, 20 | ringdir 20222 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 22 | 18, 21 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 23 | 3, 6, 13, 16, 22 | caofdir 7714 | 1 ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐻 ∘f · (𝑉 × {𝑋})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 × cxp 5652 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 Basecbs 17228 +gcplusg 17271 .rcmulr 17272 Scalarcsca 17274 Ringcrg 20193 LModclmod 20817 LFnlclfn 39075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-map 8842 df-ring 20195 df-lmod 20819 df-lfl 39076 |
| This theorem is referenced by: ldualvsdi1 39161 |
| Copyright terms: Public domain | W3C validator |