Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsdi1 Structured version   Visualization version   GIF version

Theorem lflvsdi1 39064
Description: Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfldi.v 𝑉 = (Base‘𝑊)
lfldi.r 𝑅 = (Scalar‘𝑊)
lfldi.k 𝐾 = (Base‘𝑅)
lfldi.p + = (+g𝑅)
lfldi.t · = (.r𝑅)
lfldi.f 𝐹 = (LFnl‘𝑊)
lfldi.w (𝜑𝑊 ∈ LMod)
lfldi.x (𝜑𝑋𝐾)
lfldi1.g (𝜑𝐺𝐹)
lfldi1.h (𝜑𝐻𝐹)
Assertion
Ref Expression
lflvsdi1 (𝜑 → ((𝐺f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐻f · (𝑉 × {𝑋}))))

Proof of Theorem lflvsdi1
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfldi.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6854 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lfldi.x . . 3 (𝜑𝑋𝐾)
5 fconst6g 6731 . . 3 (𝑋𝐾 → (𝑉 × {𝑋}):𝑉𝐾)
64, 5syl 17 . 2 (𝜑 → (𝑉 × {𝑋}):𝑉𝐾)
7 lfldi.w . . 3 (𝜑𝑊 ∈ LMod)
8 lfldi1.g . . 3 (𝜑𝐺𝐹)
9 lfldi.r . . . 4 𝑅 = (Scalar‘𝑊)
10 lfldi.k . . . 4 𝐾 = (Base‘𝑅)
11 lfldi.f . . . 4 𝐹 = (LFnl‘𝑊)
129, 10, 1, 11lflf 39049 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
137, 8, 12syl2anc 584 . 2 (𝜑𝐺:𝑉𝐾)
14 lfldi1.h . . 3 (𝜑𝐻𝐹)
159, 10, 1, 11lflf 39049 . . 3 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻:𝑉𝐾)
167, 14, 15syl2anc 584 . 2 (𝜑𝐻:𝑉𝐾)
179lmodring 20806 . . . 4 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
187, 17syl 17 . . 3 (𝜑𝑅 ∈ Ring)
19 lfldi.p . . . 4 + = (+g𝑅)
20 lfldi.t . . . 4 · = (.r𝑅)
2110, 19, 20ringdir 20182 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2218, 21sylan 580 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
233, 6, 13, 16, 22caofdir 7676 1 (𝜑 → ((𝐺f + 𝐻) ∘f · (𝑉 × {𝑋})) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐻f · (𝑉 × {𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585   × cxp 5629  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199  Ringcrg 20153  LModclmod 20798  LFnlclfn 39043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-map 8778  df-ring 20155  df-lmod 20800  df-lfl 39044
This theorem is referenced by:  ldualvsdi1  39129
  Copyright terms: Public domain W3C validator