Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsdi1 Structured version   Visualization version   GIF version

Theorem lflvsdi1 37943
Description: Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfldi.v 𝑉 = (Baseβ€˜π‘Š)
lfldi.r 𝑅 = (Scalarβ€˜π‘Š)
lfldi.k 𝐾 = (Baseβ€˜π‘…)
lfldi.p + = (+gβ€˜π‘…)
lfldi.t Β· = (.rβ€˜π‘…)
lfldi.f 𝐹 = (LFnlβ€˜π‘Š)
lfldi.w (πœ‘ β†’ π‘Š ∈ LMod)
lfldi.x (πœ‘ β†’ 𝑋 ∈ 𝐾)
lfldi1.g (πœ‘ β†’ 𝐺 ∈ 𝐹)
lfldi1.h (πœ‘ β†’ 𝐻 ∈ 𝐹)
Assertion
Ref Expression
lflvsdi1 (πœ‘ β†’ ((𝐺 ∘f + 𝐻) ∘f Β· (𝑉 Γ— {𝑋})) = ((𝐺 ∘f Β· (𝑉 Γ— {𝑋})) ∘f + (𝐻 ∘f Β· (𝑉 Γ— {𝑋}))))

Proof of Theorem lflvsdi1
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfldi.v . . . 4 𝑉 = (Baseβ€˜π‘Š)
21fvexi 6905 . . 3 𝑉 ∈ V
32a1i 11 . 2 (πœ‘ β†’ 𝑉 ∈ V)
4 lfldi.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐾)
5 fconst6g 6780 . . 3 (𝑋 ∈ 𝐾 β†’ (𝑉 Γ— {𝑋}):π‘‰βŸΆπΎ)
64, 5syl 17 . 2 (πœ‘ β†’ (𝑉 Γ— {𝑋}):π‘‰βŸΆπΎ)
7 lfldi.w . . 3 (πœ‘ β†’ π‘Š ∈ LMod)
8 lfldi1.g . . 3 (πœ‘ β†’ 𝐺 ∈ 𝐹)
9 lfldi.r . . . 4 𝑅 = (Scalarβ€˜π‘Š)
10 lfldi.k . . . 4 𝐾 = (Baseβ€˜π‘…)
11 lfldi.f . . . 4 𝐹 = (LFnlβ€˜π‘Š)
129, 10, 1, 11lflf 37928 . . 3 ((π‘Š ∈ LMod ∧ 𝐺 ∈ 𝐹) β†’ 𝐺:π‘‰βŸΆπΎ)
137, 8, 12syl2anc 584 . 2 (πœ‘ β†’ 𝐺:π‘‰βŸΆπΎ)
14 lfldi1.h . . 3 (πœ‘ β†’ 𝐻 ∈ 𝐹)
159, 10, 1, 11lflf 37928 . . 3 ((π‘Š ∈ LMod ∧ 𝐻 ∈ 𝐹) β†’ 𝐻:π‘‰βŸΆπΎ)
167, 14, 15syl2anc 584 . 2 (πœ‘ β†’ 𝐻:π‘‰βŸΆπΎ)
179lmodring 20478 . . . 4 (π‘Š ∈ LMod β†’ 𝑅 ∈ Ring)
187, 17syl 17 . . 3 (πœ‘ β†’ 𝑅 ∈ Ring)
19 lfldi.p . . . 4 + = (+gβ€˜π‘…)
20 lfldi.t . . . 4 Β· = (.rβ€˜π‘…)
2110, 19, 20ringdir 20081 . . 3 ((𝑅 ∈ Ring ∧ (π‘₯ ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) β†’ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))
2218, 21sylan 580 . 2 ((πœ‘ ∧ (π‘₯ ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) β†’ ((π‘₯ + 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))
233, 6, 13, 16, 22caofdir 7709 1 (πœ‘ β†’ ((𝐺 ∘f + 𝐻) ∘f Β· (𝑉 Γ— {𝑋})) = ((𝐺 ∘f Β· (𝑉 Γ— {𝑋})) ∘f + (𝐻 ∘f Β· (𝑉 Γ— {𝑋}))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  Vcvv 3474  {csn 4628   Γ— cxp 5674  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   ∘f cof 7667  Basecbs 17143  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199  Ringcrg 20055  LModclmod 20470  LFnlclfn 37922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-map 8821  df-ring 20057  df-lmod 20472  df-lfl 37923
This theorem is referenced by:  ldualvsdi1  38008
  Copyright terms: Public domain W3C validator