Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  q1pdir Structured version   Visualization version   GIF version

Theorem q1pdir 33603
Description: Distribution of univariate polynomial quotient over addition. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
q1pdir.d / = (quot1p𝑅)
q1pdir.r (𝜑𝑅 ∈ Ring)
q1pdir.a (𝜑𝐴𝑈)
q1pdir.c (𝜑𝐶𝑁)
q1pdir.b (𝜑𝐵𝑈)
q1pdir.1 + = (+g𝑃)
Assertion
Ref Expression
q1pdir (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))

Proof of Theorem q1pdir
StepHypRef Expression
1 q1pdir.r . 2 (𝜑𝑅 ∈ Ring)
2 r1padd1.u . . 3 𝑈 = (Base‘𝑃)
3 q1pdir.1 . . 3 + = (+g𝑃)
4 r1padd1.p . . . . . 6 𝑃 = (Poly1𝑅)
54ply1ring 22265 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
61, 5syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
76ringgrpd 20260 . . 3 (𝜑𝑃 ∈ Grp)
8 q1pdir.a . . 3 (𝜑𝐴𝑈)
9 q1pdir.b . . 3 (𝜑𝐵𝑈)
102, 3, 7, 8, 9grpcld 18978 . 2 (𝜑 → (𝐴 + 𝐵) ∈ 𝑈)
11 q1pdir.c . 2 (𝜑𝐶𝑁)
12 q1pdir.d . . . . 5 / = (quot1p𝑅)
13 r1padd1.n . . . . 5 𝑁 = (Unic1p𝑅)
1412, 4, 2, 13q1pcl 26211 . . . 4 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐶𝑁) → (𝐴 / 𝐶) ∈ 𝑈)
151, 8, 11, 14syl3anc 1370 . . 3 (𝜑 → (𝐴 / 𝐶) ∈ 𝑈)
1612, 4, 2, 13q1pcl 26211 . . . 4 ((𝑅 ∈ Ring ∧ 𝐵𝑈𝐶𝑁) → (𝐵 / 𝐶) ∈ 𝑈)
171, 9, 11, 16syl3anc 1370 . . 3 (𝜑 → (𝐵 / 𝐶) ∈ 𝑈)
182, 3, 7, 15, 17grpcld 18978 . 2 (𝜑 → ((𝐴 / 𝐶) + (𝐵 / 𝐶)) ∈ 𝑈)
194, 2, 13uc1pcl 26198 . . . . . . . 8 (𝐶𝑁𝐶𝑈)
2011, 19syl 17 . . . . . . 7 (𝜑𝐶𝑈)
21 eqid 2735 . . . . . . . 8 (.r𝑃) = (.r𝑃)
222, 3, 21ringdir 20279 . . . . . . 7 ((𝑃 ∈ Ring ∧ ((𝐴 / 𝐶) ∈ 𝑈 ∧ (𝐵 / 𝐶) ∈ 𝑈𝐶𝑈)) → (((𝐴 / 𝐶) + (𝐵 / 𝐶))(.r𝑃)𝐶) = (((𝐴 / 𝐶)(.r𝑃)𝐶) + ((𝐵 / 𝐶)(.r𝑃)𝐶)))
236, 15, 17, 20, 22syl13anc 1371 . . . . . 6 (𝜑 → (((𝐴 / 𝐶) + (𝐵 / 𝐶))(.r𝑃)𝐶) = (((𝐴 / 𝐶)(.r𝑃)𝐶) + ((𝐵 / 𝐶)(.r𝑃)𝐶)))
2423oveq2d 7447 . . . . 5 (𝜑 → ((𝐴 + 𝐵)(-g𝑃)(((𝐴 / 𝐶) + (𝐵 / 𝐶))(.r𝑃)𝐶)) = ((𝐴 + 𝐵)(-g𝑃)(((𝐴 / 𝐶)(.r𝑃)𝐶) + ((𝐵 / 𝐶)(.r𝑃)𝐶))))
256ringabld 20297 . . . . . 6 (𝜑𝑃 ∈ Abel)
262, 21, 6, 15, 20ringcld 20277 . . . . . 6 (𝜑 → ((𝐴 / 𝐶)(.r𝑃)𝐶) ∈ 𝑈)
272, 21, 6, 17, 20ringcld 20277 . . . . . 6 (𝜑 → ((𝐵 / 𝐶)(.r𝑃)𝐶) ∈ 𝑈)
28 eqid 2735 . . . . . . 7 (-g𝑃) = (-g𝑃)
292, 3, 28ablsub4 19843 . . . . . 6 ((𝑃 ∈ Abel ∧ (𝐴𝑈𝐵𝑈) ∧ (((𝐴 / 𝐶)(.r𝑃)𝐶) ∈ 𝑈 ∧ ((𝐵 / 𝐶)(.r𝑃)𝐶) ∈ 𝑈)) → ((𝐴 + 𝐵)(-g𝑃)(((𝐴 / 𝐶)(.r𝑃)𝐶) + ((𝐵 / 𝐶)(.r𝑃)𝐶))) = ((𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)) + (𝐵(-g𝑃)((𝐵 / 𝐶)(.r𝑃)𝐶))))
3025, 8, 9, 26, 27, 29syl122anc 1378 . . . . 5 (𝜑 → ((𝐴 + 𝐵)(-g𝑃)(((𝐴 / 𝐶)(.r𝑃)𝐶) + ((𝐵 / 𝐶)(.r𝑃)𝐶))) = ((𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)) + (𝐵(-g𝑃)((𝐵 / 𝐶)(.r𝑃)𝐶))))
3124, 30eqtrd 2775 . . . 4 (𝜑 → ((𝐴 + 𝐵)(-g𝑃)(((𝐴 / 𝐶) + (𝐵 / 𝐶))(.r𝑃)𝐶)) = ((𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)) + (𝐵(-g𝑃)((𝐵 / 𝐶)(.r𝑃)𝐶))))
3231fveq2d 6911 . . 3 (𝜑 → ((deg1𝑅)‘((𝐴 + 𝐵)(-g𝑃)(((𝐴 / 𝐶) + (𝐵 / 𝐶))(.r𝑃)𝐶))) = ((deg1𝑅)‘((𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)) + (𝐵(-g𝑃)((𝐵 / 𝐶)(.r𝑃)𝐶)))))
33 eqid 2735 . . . 4 (deg1𝑅) = (deg1𝑅)
34 eqid 2735 . . . . . . 7 (rem1p𝑅) = (rem1p𝑅)
3534, 4, 2, 12, 21, 28r1pval 26212 . . . . . 6 ((𝐴𝑈𝐶𝑈) → (𝐴(rem1p𝑅)𝐶) = (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)))
368, 20, 35syl2anc 584 . . . . 5 (𝜑 → (𝐴(rem1p𝑅)𝐶) = (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)))
3734, 4, 2, 13r1pcl 26213 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐶𝑁) → (𝐴(rem1p𝑅)𝐶) ∈ 𝑈)
381, 8, 11, 37syl3anc 1370 . . . . 5 (𝜑 → (𝐴(rem1p𝑅)𝐶) ∈ 𝑈)
3936, 38eqeltrrd 2840 . . . 4 (𝜑 → (𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)) ∈ 𝑈)
4034, 4, 2, 12, 21, 28r1pval 26212 . . . . . 6 ((𝐵𝑈𝐶𝑈) → (𝐵(rem1p𝑅)𝐶) = (𝐵(-g𝑃)((𝐵 / 𝐶)(.r𝑃)𝐶)))
419, 20, 40syl2anc 584 . . . . 5 (𝜑 → (𝐵(rem1p𝑅)𝐶) = (𝐵(-g𝑃)((𝐵 / 𝐶)(.r𝑃)𝐶)))
4234, 4, 2, 13r1pcl 26213 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐵𝑈𝐶𝑁) → (𝐵(rem1p𝑅)𝐶) ∈ 𝑈)
431, 9, 11, 42syl3anc 1370 . . . . 5 (𝜑 → (𝐵(rem1p𝑅)𝐶) ∈ 𝑈)
4441, 43eqeltrrd 2840 . . . 4 (𝜑 → (𝐵(-g𝑃)((𝐵 / 𝐶)(.r𝑃)𝐶)) ∈ 𝑈)
4533, 4, 2deg1xrcl 26136 . . . . 5 (𝐶𝑈 → ((deg1𝑅)‘𝐶) ∈ ℝ*)
4620, 45syl 17 . . . 4 (𝜑 → ((deg1𝑅)‘𝐶) ∈ ℝ*)
4736fveq2d 6911 . . . . 5 (𝜑 → ((deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) = ((deg1𝑅)‘(𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶))))
4834, 4, 2, 13, 33r1pdeglt 26214 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐶𝑁) → ((deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) < ((deg1𝑅)‘𝐶))
491, 8, 11, 48syl3anc 1370 . . . . 5 (𝜑 → ((deg1𝑅)‘(𝐴(rem1p𝑅)𝐶)) < ((deg1𝑅)‘𝐶))
5047, 49eqbrtrrd 5172 . . . 4 (𝜑 → ((deg1𝑅)‘(𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶))) < ((deg1𝑅)‘𝐶))
5141fveq2d 6911 . . . . 5 (𝜑 → ((deg1𝑅)‘(𝐵(rem1p𝑅)𝐶)) = ((deg1𝑅)‘(𝐵(-g𝑃)((𝐵 / 𝐶)(.r𝑃)𝐶))))
5234, 4, 2, 13, 33r1pdeglt 26214 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐵𝑈𝐶𝑁) → ((deg1𝑅)‘(𝐵(rem1p𝑅)𝐶)) < ((deg1𝑅)‘𝐶))
531, 9, 11, 52syl3anc 1370 . . . . 5 (𝜑 → ((deg1𝑅)‘(𝐵(rem1p𝑅)𝐶)) < ((deg1𝑅)‘𝐶))
5451, 53eqbrtrrd 5172 . . . 4 (𝜑 → ((deg1𝑅)‘(𝐵(-g𝑃)((𝐵 / 𝐶)(.r𝑃)𝐶))) < ((deg1𝑅)‘𝐶))
554, 33, 1, 2, 3, 39, 44, 46, 50, 54deg1addlt 33600 . . 3 (𝜑 → ((deg1𝑅)‘((𝐴(-g𝑃)((𝐴 / 𝐶)(.r𝑃)𝐶)) + (𝐵(-g𝑃)((𝐵 / 𝐶)(.r𝑃)𝐶)))) < ((deg1𝑅)‘𝐶))
5632, 55eqbrtrd 5170 . 2 (𝜑 → ((deg1𝑅)‘((𝐴 + 𝐵)(-g𝑃)(((𝐴 / 𝐶) + (𝐵 / 𝐶))(.r𝑃)𝐶))) < ((deg1𝑅)‘𝐶))
5712, 4, 2, 33, 28, 21, 13q1peqb 26210 . . 3 ((𝑅 ∈ Ring ∧ (𝐴 + 𝐵) ∈ 𝑈𝐶𝑁) → ((((𝐴 / 𝐶) + (𝐵 / 𝐶)) ∈ 𝑈 ∧ ((deg1𝑅)‘((𝐴 + 𝐵)(-g𝑃)(((𝐴 / 𝐶) + (𝐵 / 𝐶))(.r𝑃)𝐶))) < ((deg1𝑅)‘𝐶)) ↔ ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))))
5857biimpa 476 . 2 (((𝑅 ∈ Ring ∧ (𝐴 + 𝐵) ∈ 𝑈𝐶𝑁) ∧ (((𝐴 / 𝐶) + (𝐵 / 𝐶)) ∈ 𝑈 ∧ ((deg1𝑅)‘((𝐴 + 𝐵)(-g𝑃)(((𝐴 / 𝐶) + (𝐵 / 𝐶))(.r𝑃)𝐶))) < ((deg1𝑅)‘𝐶))) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))
591, 10, 11, 18, 56, 58syl32anc 1377 1 (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  *cxr 11292   < clt 11293  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  -gcsg 18966  Abelcabl 19814  Ringcrg 20251  Poly1cpl1 22194  deg1cdg1 26108  Unic1pcuc1p 26181  quot1pcq1p 26182  rem1pcr1p 26183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-subrng 20563  df-subrg 20587  df-rlreg 20711  df-lmod 20877  df-lss 20948  df-cnfld 21383  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-psr1 22197  df-vr1 22198  df-ply1 22199  df-coe1 22200  df-mdeg 26109  df-deg1 26110  df-uc1p 26186  df-q1p 26187  df-r1p 26188
This theorem is referenced by:  r1pcyc  33607
  Copyright terms: Public domain W3C validator