Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvscl Structured version   Visualization version   GIF version

Theorem lflvscl 36212
Description: Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
lflsccl.v 𝑉 = (Base‘𝑊)
lflsccl.d 𝐷 = (Scalar‘𝑊)
lflsccl.k 𝐾 = (Base‘𝐷)
lflsccl.t · = (.r𝐷)
lflsccl.f 𝐹 = (LFnl‘𝑊)
lflsccl.w (𝜑𝑊 ∈ LMod)
lflsccl.g (𝜑𝐺𝐹)
lflsccl.r (𝜑𝑅𝐾)
Assertion
Ref Expression
lflvscl (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)

Proof of Theorem lflvscl
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflsccl.v . . 3 𝑉 = (Base‘𝑊)
21a1i 11 . 2 (𝜑𝑉 = (Base‘𝑊))
3 eqidd 2822 . 2 (𝜑 → (+g𝑊) = (+g𝑊))
4 lflsccl.d . . 3 𝐷 = (Scalar‘𝑊)
54a1i 11 . 2 (𝜑𝐷 = (Scalar‘𝑊))
6 eqidd 2822 . 2 (𝜑 → ( ·𝑠𝑊) = ( ·𝑠𝑊))
7 lflsccl.k . . 3 𝐾 = (Base‘𝐷)
87a1i 11 . 2 (𝜑𝐾 = (Base‘𝐷))
9 eqidd 2822 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
10 lflsccl.t . . 3 · = (.r𝐷)
1110a1i 11 . 2 (𝜑· = (.r𝐷))
12 lflsccl.f . . 3 𝐹 = (LFnl‘𝑊)
1312a1i 11 . 2 (𝜑𝐹 = (LFnl‘𝑊))
14 lflsccl.w . . . . 5 (𝜑𝑊 ∈ LMod)
154lmodring 19641 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
1614, 15syl 17 . . . 4 (𝜑𝐷 ∈ Ring)
177, 10ringcl 19310 . . . . 5 ((𝐷 ∈ Ring ∧ 𝑥𝐾𝑦𝐾) → (𝑥 · 𝑦) ∈ 𝐾)
18173expb 1116 . . . 4 ((𝐷 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 · 𝑦) ∈ 𝐾)
1916, 18sylan 582 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 · 𝑦) ∈ 𝐾)
20 lflsccl.g . . . 4 (𝜑𝐺𝐹)
214, 7, 1, 12lflf 36198 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
2214, 20, 21syl2anc 586 . . 3 (𝜑𝐺:𝑉𝐾)
23 lflsccl.r . . . 4 (𝜑𝑅𝐾)
24 fconst6g 6567 . . . 4 (𝑅𝐾 → (𝑉 × {𝑅}):𝑉𝐾)
2523, 24syl 17 . . 3 (𝜑 → (𝑉 × {𝑅}):𝑉𝐾)
261fvexi 6683 . . . 4 𝑉 ∈ V
2726a1i 11 . . 3 (𝜑𝑉 ∈ V)
28 inidm 4194 . . 3 (𝑉𝑉) = 𝑉
2919, 22, 25, 27, 27, 28off 7423 . 2 (𝜑 → (𝐺f · (𝑉 × {𝑅})):𝑉𝐾)
3014adantr 483 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑊 ∈ LMod)
3120adantr 483 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝐺𝐹)
32 simpr1 1190 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑟𝐾)
33 simpr2 1191 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
34 simpr3 1192 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
35 eqid 2821 . . . . . . 7 (+g𝑊) = (+g𝑊)
36 eqid 2821 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
37 eqid 2821 . . . . . . 7 (+g𝐷) = (+g𝐷)
381, 35, 4, 36, 7, 37, 10, 12lfli 36196 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)))
3930, 31, 32, 33, 34, 38syl113anc 1378 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)))
4039oveq1d 7170 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅))
4116adantr 483 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝐷 ∈ Ring)
424, 7, 1, 12lflcl 36199 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
4330, 31, 33, 42syl3anc 1367 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺𝑥) ∈ 𝐾)
447, 10ringcl 19310 . . . . . 6 ((𝐷 ∈ Ring ∧ 𝑟𝐾 ∧ (𝐺𝑥) ∈ 𝐾) → (𝑟 · (𝐺𝑥)) ∈ 𝐾)
4541, 32, 43, 44syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟 · (𝐺𝑥)) ∈ 𝐾)
464, 7, 1, 12lflcl 36199 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦𝑉) → (𝐺𝑦) ∈ 𝐾)
4730, 31, 34, 46syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺𝑦) ∈ 𝐾)
4823adantr 483 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑅𝐾)
497, 37, 10ringdir 19316 . . . . 5 ((𝐷 ∈ Ring ∧ ((𝑟 · (𝐺𝑥)) ∈ 𝐾 ∧ (𝐺𝑦) ∈ 𝐾𝑅𝐾)) → (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)))
5041, 45, 47, 48, 49syl13anc 1368 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)))
517, 10ringass 19313 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝑟𝐾 ∧ (𝐺𝑥) ∈ 𝐾𝑅𝐾)) → ((𝑟 · (𝐺𝑥)) · 𝑅) = (𝑟 · ((𝐺𝑥) · 𝑅)))
5241, 32, 43, 48, 51syl13anc 1368 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟 · (𝐺𝑥)) · 𝑅) = (𝑟 · ((𝐺𝑥) · 𝑅)))
5352oveq1d 7170 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
5440, 50, 533eqtrd 2860 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
551, 4, 36, 7lmodvscl 19650 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑟𝐾𝑥𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
5630, 32, 33, 55syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
571, 35lmodvacl 19647 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
5830, 56, 34, 57syl3anc 1367 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
5922ffnd 6514 . . . . 5 (𝜑𝐺 Fn 𝑉)
60 eqidd 2822 . . . . 5 ((𝜑 ∧ ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)))
6127, 23, 59, 60ofc2 7432 . . . 4 ((𝜑 ∧ ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅))
6258, 61syldan 593 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅))
63 eqidd 2822 . . . . . . 7 ((𝜑𝑥𝑉) → (𝐺𝑥) = (𝐺𝑥))
6427, 23, 59, 63ofc2 7432 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑥) = ((𝐺𝑥) · 𝑅))
6533, 64syldan 593 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘𝑥) = ((𝐺𝑥) · 𝑅))
6665oveq2d 7171 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥)) = (𝑟 · ((𝐺𝑥) · 𝑅)))
67 eqidd 2822 . . . . . 6 ((𝜑𝑦𝑉) → (𝐺𝑦) = (𝐺𝑦))
6827, 23, 59, 67ofc2 7432 . . . . 5 ((𝜑𝑦𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑦) = ((𝐺𝑦) · 𝑅))
6934, 68syldan 593 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘𝑦) = ((𝐺𝑦) · 𝑅))
7066, 69oveq12d 7173 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥))(+g𝐷)((𝐺f · (𝑉 × {𝑅}))‘𝑦)) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
7154, 62, 703eqtr4d 2866 . 2 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥))(+g𝐷)((𝐺f · (𝑉 × {𝑅}))‘𝑦)))
722, 3, 5, 6, 8, 9, 11, 13, 29, 71, 14islfld 36197 1 (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  {csn 4566   × cxp 5552  wf 6350  cfv 6354  (class class class)co 7155  f cof 7406  Basecbs 16482  +gcplusg 16564  .rcmulr 16565  Scalarcsca 16567   ·𝑠 cvsca 16568  Ringcrg 19296  LModclmod 19633  LFnlclfn 36192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-plusg 16577  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-mgp 19239  df-ring 19298  df-lmod 19635  df-lfl 36193
This theorem is referenced by:  lkrsc  36232  lfl1dim  36256  ldualvscl  36274  ldualvsass  36276
  Copyright terms: Public domain W3C validator