Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvscl Structured version   Visualization version   GIF version

Theorem lflvscl 39070
Description: Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
lflsccl.v 𝑉 = (Base‘𝑊)
lflsccl.d 𝐷 = (Scalar‘𝑊)
lflsccl.k 𝐾 = (Base‘𝐷)
lflsccl.t · = (.r𝐷)
lflsccl.f 𝐹 = (LFnl‘𝑊)
lflsccl.w (𝜑𝑊 ∈ LMod)
lflsccl.g (𝜑𝐺𝐹)
lflsccl.r (𝜑𝑅𝐾)
Assertion
Ref Expression
lflvscl (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)

Proof of Theorem lflvscl
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflsccl.v . . 3 𝑉 = (Base‘𝑊)
21a1i 11 . 2 (𝜑𝑉 = (Base‘𝑊))
3 eqidd 2730 . 2 (𝜑 → (+g𝑊) = (+g𝑊))
4 lflsccl.d . . 3 𝐷 = (Scalar‘𝑊)
54a1i 11 . 2 (𝜑𝐷 = (Scalar‘𝑊))
6 eqidd 2730 . 2 (𝜑 → ( ·𝑠𝑊) = ( ·𝑠𝑊))
7 lflsccl.k . . 3 𝐾 = (Base‘𝐷)
87a1i 11 . 2 (𝜑𝐾 = (Base‘𝐷))
9 eqidd 2730 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
10 lflsccl.t . . 3 · = (.r𝐷)
1110a1i 11 . 2 (𝜑· = (.r𝐷))
12 lflsccl.f . . 3 𝐹 = (LFnl‘𝑊)
1312a1i 11 . 2 (𝜑𝐹 = (LFnl‘𝑊))
14 lflsccl.w . . . . 5 (𝜑𝑊 ∈ LMod)
154lmodring 20774 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
1614, 15syl 17 . . . 4 (𝜑𝐷 ∈ Ring)
177, 10ringcl 20159 . . . . 5 ((𝐷 ∈ Ring ∧ 𝑥𝐾𝑦𝐾) → (𝑥 · 𝑦) ∈ 𝐾)
18173expb 1120 . . . 4 ((𝐷 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 · 𝑦) ∈ 𝐾)
1916, 18sylan 580 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 · 𝑦) ∈ 𝐾)
20 lflsccl.g . . . 4 (𝜑𝐺𝐹)
214, 7, 1, 12lflf 39056 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
2214, 20, 21syl2anc 584 . . 3 (𝜑𝐺:𝑉𝐾)
23 lflsccl.r . . . 4 (𝜑𝑅𝐾)
24 fconst6g 6749 . . . 4 (𝑅𝐾 → (𝑉 × {𝑅}):𝑉𝐾)
2523, 24syl 17 . . 3 (𝜑 → (𝑉 × {𝑅}):𝑉𝐾)
261fvexi 6872 . . . 4 𝑉 ∈ V
2726a1i 11 . . 3 (𝜑𝑉 ∈ V)
28 inidm 4190 . . 3 (𝑉𝑉) = 𝑉
2919, 22, 25, 27, 27, 28off 7671 . 2 (𝜑 → (𝐺f · (𝑉 × {𝑅})):𝑉𝐾)
3014adantr 480 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑊 ∈ LMod)
3120adantr 480 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝐺𝐹)
32 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑟𝐾)
33 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
34 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
35 eqid 2729 . . . . . . 7 (+g𝑊) = (+g𝑊)
36 eqid 2729 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
37 eqid 2729 . . . . . . 7 (+g𝐷) = (+g𝐷)
381, 35, 4, 36, 7, 37, 10, 12lfli 39054 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)))
3930, 31, 32, 33, 34, 38syl113anc 1384 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)))
4039oveq1d 7402 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅))
4116adantr 480 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝐷 ∈ Ring)
424, 7, 1, 12lflcl 39057 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
4330, 31, 33, 42syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺𝑥) ∈ 𝐾)
447, 10ringcl 20159 . . . . . 6 ((𝐷 ∈ Ring ∧ 𝑟𝐾 ∧ (𝐺𝑥) ∈ 𝐾) → (𝑟 · (𝐺𝑥)) ∈ 𝐾)
4541, 32, 43, 44syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟 · (𝐺𝑥)) ∈ 𝐾)
464, 7, 1, 12lflcl 39057 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦𝑉) → (𝐺𝑦) ∈ 𝐾)
4730, 31, 34, 46syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺𝑦) ∈ 𝐾)
4823adantr 480 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑅𝐾)
497, 37, 10ringdir 20171 . . . . 5 ((𝐷 ∈ Ring ∧ ((𝑟 · (𝐺𝑥)) ∈ 𝐾 ∧ (𝐺𝑦) ∈ 𝐾𝑅𝐾)) → (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)))
5041, 45, 47, 48, 49syl13anc 1374 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)))
517, 10ringass 20162 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝑟𝐾 ∧ (𝐺𝑥) ∈ 𝐾𝑅𝐾)) → ((𝑟 · (𝐺𝑥)) · 𝑅) = (𝑟 · ((𝐺𝑥) · 𝑅)))
5241, 32, 43, 48, 51syl13anc 1374 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟 · (𝐺𝑥)) · 𝑅) = (𝑟 · ((𝐺𝑥) · 𝑅)))
5352oveq1d 7402 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
5440, 50, 533eqtrd 2768 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
551, 4, 36, 7lmodvscl 20784 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑟𝐾𝑥𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
5630, 32, 33, 55syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
571, 35lmodvacl 20781 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
5830, 56, 34, 57syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
5922ffnd 6689 . . . . 5 (𝜑𝐺 Fn 𝑉)
60 eqidd 2730 . . . . 5 ((𝜑 ∧ ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)))
6127, 23, 59, 60ofc2 7682 . . . 4 ((𝜑 ∧ ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅))
6258, 61syldan 591 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅))
63 eqidd 2730 . . . . . . 7 ((𝜑𝑥𝑉) → (𝐺𝑥) = (𝐺𝑥))
6427, 23, 59, 63ofc2 7682 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑥) = ((𝐺𝑥) · 𝑅))
6533, 64syldan 591 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘𝑥) = ((𝐺𝑥) · 𝑅))
6665oveq2d 7403 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥)) = (𝑟 · ((𝐺𝑥) · 𝑅)))
67 eqidd 2730 . . . . . 6 ((𝜑𝑦𝑉) → (𝐺𝑦) = (𝐺𝑦))
6827, 23, 59, 67ofc2 7682 . . . . 5 ((𝜑𝑦𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑦) = ((𝐺𝑦) · 𝑅))
6934, 68syldan 591 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘𝑦) = ((𝐺𝑦) · 𝑅))
7066, 69oveq12d 7405 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥))(+g𝐷)((𝐺f · (𝑉 × {𝑅}))‘𝑦)) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
7154, 62, 703eqtr4d 2774 . 2 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥))(+g𝐷)((𝐺f · (𝑉 × {𝑅}))‘𝑦)))
722, 3, 5, 6, 8, 9, 11, 13, 29, 71, 14islfld 39055 1 (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  Ringcrg 20142  LModclmod 20766  LFnlclfn 39050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-mgp 20050  df-ring 20144  df-lmod 20768  df-lfl 39051
This theorem is referenced by:  lkrsc  39090  lfl1dim  39114  ldualvscl  39132  ldualvsass  39134
  Copyright terms: Public domain W3C validator