Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvscl Structured version   Visualization version   GIF version

Theorem lflvscl 36373
Description: Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
lflsccl.v 𝑉 = (Base‘𝑊)
lflsccl.d 𝐷 = (Scalar‘𝑊)
lflsccl.k 𝐾 = (Base‘𝐷)
lflsccl.t · = (.r𝐷)
lflsccl.f 𝐹 = (LFnl‘𝑊)
lflsccl.w (𝜑𝑊 ∈ LMod)
lflsccl.g (𝜑𝐺𝐹)
lflsccl.r (𝜑𝑅𝐾)
Assertion
Ref Expression
lflvscl (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)

Proof of Theorem lflvscl
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflsccl.v . . 3 𝑉 = (Base‘𝑊)
21a1i 11 . 2 (𝜑𝑉 = (Base‘𝑊))
3 eqidd 2799 . 2 (𝜑 → (+g𝑊) = (+g𝑊))
4 lflsccl.d . . 3 𝐷 = (Scalar‘𝑊)
54a1i 11 . 2 (𝜑𝐷 = (Scalar‘𝑊))
6 eqidd 2799 . 2 (𝜑 → ( ·𝑠𝑊) = ( ·𝑠𝑊))
7 lflsccl.k . . 3 𝐾 = (Base‘𝐷)
87a1i 11 . 2 (𝜑𝐾 = (Base‘𝐷))
9 eqidd 2799 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
10 lflsccl.t . . 3 · = (.r𝐷)
1110a1i 11 . 2 (𝜑· = (.r𝐷))
12 lflsccl.f . . 3 𝐹 = (LFnl‘𝑊)
1312a1i 11 . 2 (𝜑𝐹 = (LFnl‘𝑊))
14 lflsccl.w . . . . 5 (𝜑𝑊 ∈ LMod)
154lmodring 19635 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
1614, 15syl 17 . . . 4 (𝜑𝐷 ∈ Ring)
177, 10ringcl 19307 . . . . 5 ((𝐷 ∈ Ring ∧ 𝑥𝐾𝑦𝐾) → (𝑥 · 𝑦) ∈ 𝐾)
18173expb 1117 . . . 4 ((𝐷 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 · 𝑦) ∈ 𝐾)
1916, 18sylan 583 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 · 𝑦) ∈ 𝐾)
20 lflsccl.g . . . 4 (𝜑𝐺𝐹)
214, 7, 1, 12lflf 36359 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
2214, 20, 21syl2anc 587 . . 3 (𝜑𝐺:𝑉𝐾)
23 lflsccl.r . . . 4 (𝜑𝑅𝐾)
24 fconst6g 6542 . . . 4 (𝑅𝐾 → (𝑉 × {𝑅}):𝑉𝐾)
2523, 24syl 17 . . 3 (𝜑 → (𝑉 × {𝑅}):𝑉𝐾)
261fvexi 6659 . . . 4 𝑉 ∈ V
2726a1i 11 . . 3 (𝜑𝑉 ∈ V)
28 inidm 4145 . . 3 (𝑉𝑉) = 𝑉
2919, 22, 25, 27, 27, 28off 7404 . 2 (𝜑 → (𝐺f · (𝑉 × {𝑅})):𝑉𝐾)
3014adantr 484 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑊 ∈ LMod)
3120adantr 484 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝐺𝐹)
32 simpr1 1191 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑟𝐾)
33 simpr2 1192 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
34 simpr3 1193 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
35 eqid 2798 . . . . . . 7 (+g𝑊) = (+g𝑊)
36 eqid 2798 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
37 eqid 2798 . . . . . . 7 (+g𝐷) = (+g𝐷)
381, 35, 4, 36, 7, 37, 10, 12lfli 36357 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)))
3930, 31, 32, 33, 34, 38syl113anc 1379 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)))
4039oveq1d 7150 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅))
4116adantr 484 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝐷 ∈ Ring)
424, 7, 1, 12lflcl 36360 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
4330, 31, 33, 42syl3anc 1368 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺𝑥) ∈ 𝐾)
447, 10ringcl 19307 . . . . . 6 ((𝐷 ∈ Ring ∧ 𝑟𝐾 ∧ (𝐺𝑥) ∈ 𝐾) → (𝑟 · (𝐺𝑥)) ∈ 𝐾)
4541, 32, 43, 44syl3anc 1368 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟 · (𝐺𝑥)) ∈ 𝐾)
464, 7, 1, 12lflcl 36360 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦𝑉) → (𝐺𝑦) ∈ 𝐾)
4730, 31, 34, 46syl3anc 1368 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺𝑦) ∈ 𝐾)
4823adantr 484 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑅𝐾)
497, 37, 10ringdir 19313 . . . . 5 ((𝐷 ∈ Ring ∧ ((𝑟 · (𝐺𝑥)) ∈ 𝐾 ∧ (𝐺𝑦) ∈ 𝐾𝑅𝐾)) → (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)))
5041, 45, 47, 48, 49syl13anc 1369 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)))
517, 10ringass 19310 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝑟𝐾 ∧ (𝐺𝑥) ∈ 𝐾𝑅𝐾)) → ((𝑟 · (𝐺𝑥)) · 𝑅) = (𝑟 · ((𝐺𝑥) · 𝑅)))
5241, 32, 43, 48, 51syl13anc 1369 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟 · (𝐺𝑥)) · 𝑅) = (𝑟 · ((𝐺𝑥) · 𝑅)))
5352oveq1d 7150 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
5440, 50, 533eqtrd 2837 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
551, 4, 36, 7lmodvscl 19644 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑟𝐾𝑥𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
5630, 32, 33, 55syl3anc 1368 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
571, 35lmodvacl 19641 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
5830, 56, 34, 57syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
5922ffnd 6488 . . . . 5 (𝜑𝐺 Fn 𝑉)
60 eqidd 2799 . . . . 5 ((𝜑 ∧ ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)))
6127, 23, 59, 60ofc2 7413 . . . 4 ((𝜑 ∧ ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅))
6258, 61syldan 594 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅))
63 eqidd 2799 . . . . . . 7 ((𝜑𝑥𝑉) → (𝐺𝑥) = (𝐺𝑥))
6427, 23, 59, 63ofc2 7413 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑥) = ((𝐺𝑥) · 𝑅))
6533, 64syldan 594 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘𝑥) = ((𝐺𝑥) · 𝑅))
6665oveq2d 7151 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥)) = (𝑟 · ((𝐺𝑥) · 𝑅)))
67 eqidd 2799 . . . . . 6 ((𝜑𝑦𝑉) → (𝐺𝑦) = (𝐺𝑦))
6827, 23, 59, 67ofc2 7413 . . . . 5 ((𝜑𝑦𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑦) = ((𝐺𝑦) · 𝑅))
6934, 68syldan 594 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘𝑦) = ((𝐺𝑦) · 𝑅))
7066, 69oveq12d 7153 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥))(+g𝐷)((𝐺f · (𝑉 × {𝑅}))‘𝑦)) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
7154, 62, 703eqtr4d 2843 . 2 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥))(+g𝐷)((𝐺f · (𝑉 × {𝑅}))‘𝑦)))
722, 3, 5, 6, 8, 9, 11, 13, 29, 71, 14islfld 36358 1 (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  {csn 4525   × cxp 5517  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  Ringcrg 19290  LModclmod 19627  LFnlclfn 36353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-mgp 19233  df-ring 19292  df-lmod 19629  df-lfl 36354
This theorem is referenced by:  lkrsc  36393  lfl1dim  36417  ldualvscl  36435  ldualvsass  36437
  Copyright terms: Public domain W3C validator