Step | Hyp | Ref
| Expression |
1 | | lflsccl.v |
. . 3
⊢ 𝑉 = (Base‘𝑊) |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) |
3 | | eqidd 2739 |
. 2
⊢ (𝜑 → (+g‘𝑊) = (+g‘𝑊)) |
4 | | lflsccl.d |
. . 3
⊢ 𝐷 = (Scalar‘𝑊) |
5 | 4 | a1i 11 |
. 2
⊢ (𝜑 → 𝐷 = (Scalar‘𝑊)) |
6 | | eqidd 2739 |
. 2
⊢ (𝜑 → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊)) |
7 | | lflsccl.k |
. . 3
⊢ 𝐾 = (Base‘𝐷) |
8 | 7 | a1i 11 |
. 2
⊢ (𝜑 → 𝐾 = (Base‘𝐷)) |
9 | | eqidd 2739 |
. 2
⊢ (𝜑 → (+g‘𝐷) = (+g‘𝐷)) |
10 | | lflsccl.t |
. . 3
⊢ · =
(.r‘𝐷) |
11 | 10 | a1i 11 |
. 2
⊢ (𝜑 → · =
(.r‘𝐷)) |
12 | | lflsccl.f |
. . 3
⊢ 𝐹 = (LFnl‘𝑊) |
13 | 12 | a1i 11 |
. 2
⊢ (𝜑 → 𝐹 = (LFnl‘𝑊)) |
14 | | lflsccl.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ LMod) |
15 | 4 | lmodring 20046 |
. . . . 5
⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
16 | 14, 15 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Ring) |
17 | 7, 10 | ringcl 19715 |
. . . . 5
⊢ ((𝐷 ∈ Ring ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → (𝑥 · 𝑦) ∈ 𝐾) |
18 | 17 | 3expb 1118 |
. . . 4
⊢ ((𝐷 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥 · 𝑦) ∈ 𝐾) |
19 | 16, 18 | sylan 579 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥 · 𝑦) ∈ 𝐾) |
20 | | lflsccl.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
21 | 4, 7, 1, 12 | lflf 37004 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
22 | 14, 20, 21 | syl2anc 583 |
. . 3
⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
23 | | lflsccl.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝐾) |
24 | | fconst6g 6647 |
. . . 4
⊢ (𝑅 ∈ 𝐾 → (𝑉 × {𝑅}):𝑉⟶𝐾) |
25 | 23, 24 | syl 17 |
. . 3
⊢ (𝜑 → (𝑉 × {𝑅}):𝑉⟶𝐾) |
26 | 1 | fvexi 6770 |
. . . 4
⊢ 𝑉 ∈ V |
27 | 26 | a1i 11 |
. . 3
⊢ (𝜑 → 𝑉 ∈ V) |
28 | | inidm 4149 |
. . 3
⊢ (𝑉 ∩ 𝑉) = 𝑉 |
29 | 19, 22, 25, 27, 27, 28 | off 7529 |
. 2
⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {𝑅})):𝑉⟶𝐾) |
30 | 14 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑊 ∈ LMod) |
31 | 20 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝐺 ∈ 𝐹) |
32 | | simpr1 1192 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑟 ∈ 𝐾) |
33 | | simpr2 1193 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ 𝑉) |
34 | | simpr3 1194 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ 𝑉) |
35 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝑊) = (+g‘𝑊) |
36 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
37 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝐷) = (+g‘𝐷) |
38 | 1, 35, 4, 36, 7, 37, 10, 12 | lfli 37002 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟 · (𝐺‘𝑥))(+g‘𝐷)(𝐺‘𝑦))) |
39 | 30, 31, 32, 33, 34, 38 | syl113anc 1380 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟 · (𝐺‘𝑥))(+g‘𝐷)(𝐺‘𝑦))) |
40 | 39 | oveq1d 7270 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) · 𝑅) = (((𝑟 · (𝐺‘𝑥))(+g‘𝐷)(𝐺‘𝑦)) · 𝑅)) |
41 | 16 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝐷 ∈ Ring) |
42 | 4, 7, 1, 12 | lflcl 37005 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝐾) |
43 | 30, 31, 33, 42 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐺‘𝑥) ∈ 𝐾) |
44 | 7, 10 | ringcl 19715 |
. . . . . 6
⊢ ((𝐷 ∈ Ring ∧ 𝑟 ∈ 𝐾 ∧ (𝐺‘𝑥) ∈ 𝐾) → (𝑟 · (𝐺‘𝑥)) ∈ 𝐾) |
45 | 41, 32, 43, 44 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑟 · (𝐺‘𝑥)) ∈ 𝐾) |
46 | 4, 7, 1, 12 | lflcl 37005 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑦 ∈ 𝑉) → (𝐺‘𝑦) ∈ 𝐾) |
47 | 30, 31, 34, 46 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐺‘𝑦) ∈ 𝐾) |
48 | 23 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → 𝑅 ∈ 𝐾) |
49 | 7, 37, 10 | ringdir 19721 |
. . . . 5
⊢ ((𝐷 ∈ Ring ∧ ((𝑟 · (𝐺‘𝑥)) ∈ 𝐾 ∧ (𝐺‘𝑦) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) → (((𝑟 · (𝐺‘𝑥))(+g‘𝐷)(𝐺‘𝑦)) · 𝑅) = (((𝑟 · (𝐺‘𝑥)) · 𝑅)(+g‘𝐷)((𝐺‘𝑦) · 𝑅))) |
50 | 41, 45, 47, 48, 49 | syl13anc 1370 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (((𝑟 · (𝐺‘𝑥))(+g‘𝐷)(𝐺‘𝑦)) · 𝑅) = (((𝑟 · (𝐺‘𝑥)) · 𝑅)(+g‘𝐷)((𝐺‘𝑦) · 𝑅))) |
51 | 7, 10 | ringass 19718 |
. . . . . 6
⊢ ((𝐷 ∈ Ring ∧ (𝑟 ∈ 𝐾 ∧ (𝐺‘𝑥) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾)) → ((𝑟 · (𝐺‘𝑥)) · 𝑅) = (𝑟 · ((𝐺‘𝑥) · 𝑅))) |
52 | 41, 32, 43, 48, 51 | syl13anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑟 · (𝐺‘𝑥)) · 𝑅) = (𝑟 · ((𝐺‘𝑥) · 𝑅))) |
53 | 52 | oveq1d 7270 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (((𝑟 · (𝐺‘𝑥)) · 𝑅)(+g‘𝐷)((𝐺‘𝑦) · 𝑅)) = ((𝑟 · ((𝐺‘𝑥) · 𝑅))(+g‘𝐷)((𝐺‘𝑦) · 𝑅))) |
54 | 40, 50, 53 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) · 𝑅) = ((𝑟 · ((𝐺‘𝑥) · 𝑅))(+g‘𝐷)((𝐺‘𝑦) · 𝑅))) |
55 | 1, 4, 36, 7 | lmodvscl 20055 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉) → (𝑟( ·𝑠
‘𝑊)𝑥) ∈ 𝑉) |
56 | 30, 32, 33, 55 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑟( ·𝑠
‘𝑊)𝑥) ∈ 𝑉) |
57 | 1, 35 | lmodvacl 20052 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑟(
·𝑠 ‘𝑊)𝑥) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ 𝑉) |
58 | 30, 56, 34, 57 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ 𝑉) |
59 | 22 | ffnd 6585 |
. . . . 5
⊢ (𝜑 → 𝐺 Fn 𝑉) |
60 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ 𝑉) → (𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = (𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦))) |
61 | 27, 23, 59, 60 | ofc2 7538 |
. . . 4
⊢ ((𝜑 ∧ ((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ 𝑉) → ((𝐺 ∘f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) · 𝑅)) |
62 | 58, 61 | syldan 590 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝐺 ∘f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) · 𝑅)) |
63 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
64 | 27, 23, 59, 63 | ofc2 7538 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑥) = ((𝐺‘𝑥) · 𝑅)) |
65 | 33, 64 | syldan 590 |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑥) = ((𝐺‘𝑥) · 𝑅)) |
66 | 65 | oveq2d 7271 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑟 · ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑥)) = (𝑟 · ((𝐺‘𝑥) · 𝑅))) |
67 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → (𝐺‘𝑦) = (𝐺‘𝑦)) |
68 | 27, 23, 59, 67 | ofc2 7538 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑉) → ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑦) = ((𝐺‘𝑦) · 𝑅)) |
69 | 34, 68 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑦) = ((𝐺‘𝑦) · 𝑅)) |
70 | 66, 69 | oveq12d 7273 |
. . 3
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑟 · ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑥))(+g‘𝐷)((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑦)) = ((𝑟 · ((𝐺‘𝑥) · 𝑅))(+g‘𝐷)((𝐺‘𝑦) · 𝑅))) |
71 | 54, 62, 70 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝐺 ∘f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟 · ((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑥))(+g‘𝐷)((𝐺 ∘f · (𝑉 × {𝑅}))‘𝑦))) |
72 | 2, 3, 5, 6, 8, 9, 11, 13, 29, 71, 14 | islfld 37003 |
1
⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {𝑅})) ∈ 𝐹) |