Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvscl Structured version   Visualization version   GIF version

Theorem lflvscl 37091
Description: Closure of a scalar product with a functional. Note that this is the scalar product for a right vector space with the scalar after the vector; reversing these fails closure. (Contributed by NM, 9-Oct-2014.) (Revised by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
lflsccl.v 𝑉 = (Base‘𝑊)
lflsccl.d 𝐷 = (Scalar‘𝑊)
lflsccl.k 𝐾 = (Base‘𝐷)
lflsccl.t · = (.r𝐷)
lflsccl.f 𝐹 = (LFnl‘𝑊)
lflsccl.w (𝜑𝑊 ∈ LMod)
lflsccl.g (𝜑𝐺𝐹)
lflsccl.r (𝜑𝑅𝐾)
Assertion
Ref Expression
lflvscl (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)

Proof of Theorem lflvscl
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflsccl.v . . 3 𝑉 = (Base‘𝑊)
21a1i 11 . 2 (𝜑𝑉 = (Base‘𝑊))
3 eqidd 2739 . 2 (𝜑 → (+g𝑊) = (+g𝑊))
4 lflsccl.d . . 3 𝐷 = (Scalar‘𝑊)
54a1i 11 . 2 (𝜑𝐷 = (Scalar‘𝑊))
6 eqidd 2739 . 2 (𝜑 → ( ·𝑠𝑊) = ( ·𝑠𝑊))
7 lflsccl.k . . 3 𝐾 = (Base‘𝐷)
87a1i 11 . 2 (𝜑𝐾 = (Base‘𝐷))
9 eqidd 2739 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
10 lflsccl.t . . 3 · = (.r𝐷)
1110a1i 11 . 2 (𝜑· = (.r𝐷))
12 lflsccl.f . . 3 𝐹 = (LFnl‘𝑊)
1312a1i 11 . 2 (𝜑𝐹 = (LFnl‘𝑊))
14 lflsccl.w . . . . 5 (𝜑𝑊 ∈ LMod)
154lmodring 20131 . . . . 5 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
1614, 15syl 17 . . . 4 (𝜑𝐷 ∈ Ring)
177, 10ringcl 19800 . . . . 5 ((𝐷 ∈ Ring ∧ 𝑥𝐾𝑦𝐾) → (𝑥 · 𝑦) ∈ 𝐾)
18173expb 1119 . . . 4 ((𝐷 ∈ Ring ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 · 𝑦) ∈ 𝐾)
1916, 18sylan 580 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥 · 𝑦) ∈ 𝐾)
20 lflsccl.g . . . 4 (𝜑𝐺𝐹)
214, 7, 1, 12lflf 37077 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
2214, 20, 21syl2anc 584 . . 3 (𝜑𝐺:𝑉𝐾)
23 lflsccl.r . . . 4 (𝜑𝑅𝐾)
24 fconst6g 6663 . . . 4 (𝑅𝐾 → (𝑉 × {𝑅}):𝑉𝐾)
2523, 24syl 17 . . 3 (𝜑 → (𝑉 × {𝑅}):𝑉𝐾)
261fvexi 6788 . . . 4 𝑉 ∈ V
2726a1i 11 . . 3 (𝜑𝑉 ∈ V)
28 inidm 4152 . . 3 (𝑉𝑉) = 𝑉
2919, 22, 25, 27, 27, 28off 7551 . 2 (𝜑 → (𝐺f · (𝑉 × {𝑅})):𝑉𝐾)
3014adantr 481 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑊 ∈ LMod)
3120adantr 481 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝐺𝐹)
32 simpr1 1193 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑟𝐾)
33 simpr2 1194 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
34 simpr3 1195 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
35 eqid 2738 . . . . . . 7 (+g𝑊) = (+g𝑊)
36 eqid 2738 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
37 eqid 2738 . . . . . . 7 (+g𝐷) = (+g𝐷)
381, 35, 4, 36, 7, 37, 10, 12lfli 37075 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)))
3930, 31, 32, 33, 34, 38syl113anc 1381 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)))
4039oveq1d 7290 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅))
4116adantr 481 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝐷 ∈ Ring)
424, 7, 1, 12lflcl 37078 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
4330, 31, 33, 42syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺𝑥) ∈ 𝐾)
447, 10ringcl 19800 . . . . . 6 ((𝐷 ∈ Ring ∧ 𝑟𝐾 ∧ (𝐺𝑥) ∈ 𝐾) → (𝑟 · (𝐺𝑥)) ∈ 𝐾)
4541, 32, 43, 44syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟 · (𝐺𝑥)) ∈ 𝐾)
464, 7, 1, 12lflcl 37078 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦𝑉) → (𝐺𝑦) ∈ 𝐾)
4730, 31, 34, 46syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺𝑦) ∈ 𝐾)
4823adantr 481 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → 𝑅𝐾)
497, 37, 10ringdir 19806 . . . . 5 ((𝐷 ∈ Ring ∧ ((𝑟 · (𝐺𝑥)) ∈ 𝐾 ∧ (𝐺𝑦) ∈ 𝐾𝑅𝐾)) → (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)))
5041, 45, 47, 48, 49syl13anc 1371 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (((𝑟 · (𝐺𝑥))(+g𝐷)(𝐺𝑦)) · 𝑅) = (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)))
517, 10ringass 19803 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝑟𝐾 ∧ (𝐺𝑥) ∈ 𝐾𝑅𝐾)) → ((𝑟 · (𝐺𝑥)) · 𝑅) = (𝑟 · ((𝐺𝑥) · 𝑅)))
5241, 32, 43, 48, 51syl13anc 1371 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟 · (𝐺𝑥)) · 𝑅) = (𝑟 · ((𝐺𝑥) · 𝑅)))
5352oveq1d 7290 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (((𝑟 · (𝐺𝑥)) · 𝑅)(+g𝐷)((𝐺𝑦) · 𝑅)) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
5440, 50, 533eqtrd 2782 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
551, 4, 36, 7lmodvscl 20140 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑟𝐾𝑥𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
5630, 32, 33, 55syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
571, 35lmodvacl 20137 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
5830, 56, 34, 57syl3anc 1370 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
5922ffnd 6601 . . . . 5 (𝜑𝐺 Fn 𝑉)
60 eqidd 2739 . . . . 5 ((𝜑 ∧ ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉) → (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)))
6127, 23, 59, 60ofc2 7560 . . . 4 ((𝜑 ∧ ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅))
6258, 61syldan 591 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) · 𝑅))
63 eqidd 2739 . . . . . . 7 ((𝜑𝑥𝑉) → (𝐺𝑥) = (𝐺𝑥))
6427, 23, 59, 63ofc2 7560 . . . . . 6 ((𝜑𝑥𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑥) = ((𝐺𝑥) · 𝑅))
6533, 64syldan 591 . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘𝑥) = ((𝐺𝑥) · 𝑅))
6665oveq2d 7291 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥)) = (𝑟 · ((𝐺𝑥) · 𝑅)))
67 eqidd 2739 . . . . . 6 ((𝜑𝑦𝑉) → (𝐺𝑦) = (𝐺𝑦))
6827, 23, 59, 67ofc2 7560 . . . . 5 ((𝜑𝑦𝑉) → ((𝐺f · (𝑉 × {𝑅}))‘𝑦) = ((𝐺𝑦) · 𝑅))
6934, 68syldan 591 . . . 4 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘𝑦) = ((𝐺𝑦) · 𝑅))
7066, 69oveq12d 7293 . . 3 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥))(+g𝐷)((𝐺f · (𝑉 × {𝑅}))‘𝑦)) = ((𝑟 · ((𝐺𝑥) · 𝑅))(+g𝐷)((𝐺𝑦) · 𝑅)))
7154, 62, 703eqtr4d 2788 . 2 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → ((𝐺f · (𝑉 × {𝑅}))‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟 · ((𝐺f · (𝑉 × {𝑅}))‘𝑥))(+g𝐷)((𝐺f · (𝑉 × {𝑅}))‘𝑦)))
722, 3, 5, 6, 8, 9, 11, 13, 29, 71, 14islfld 37076 1 (𝜑 → (𝐺f · (𝑉 × {𝑅})) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  Ringcrg 19783  LModclmod 20123  LFnlclfn 37071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-mgp 19721  df-ring 19785  df-lmod 20125  df-lfl 37072
This theorem is referenced by:  lkrsc  37111  lfl1dim  37135  ldualvscl  37153  ldualvsass  37155
  Copyright terms: Public domain W3C validator