MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrdir Structured version   Visualization version   GIF version

Theorem dvrdir 20377
Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b 𝐵 = (Base‘𝑅)
dvrdir.u 𝑈 = (Unit‘𝑅)
dvrdir.p + = (+g𝑅)
dvrdir.t / = (/r𝑅)
Assertion
Ref Expression
dvrdir ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍)))

Proof of Theorem dvrdir
StepHypRef Expression
1 simpl 482 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑅 ∈ Ring)
2 simpr1 1195 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑋𝐵)
3 simpr2 1196 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑌𝐵)
4 dvrdir.b . . . . 5 𝐵 = (Base‘𝑅)
5 dvrdir.u . . . . 5 𝑈 = (Unit‘𝑅)
64, 5unitss 20341 . . . 4 𝑈𝐵
7 simpr3 1197 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑍𝑈)
8 eqid 2736 . . . . . 6 (invr𝑅) = (invr𝑅)
95, 8unitinvcl 20355 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((invr𝑅)‘𝑍) ∈ 𝑈)
107, 9syldan 591 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝑈)
116, 10sselid 3961 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
12 dvrdir.p . . . 4 + = (+g𝑅)
13 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
144, 12, 13ringdir 20227 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ ((invr𝑅)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
151, 2, 3, 11, 14syl13anc 1374 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
16 ringgrp 20203 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1716adantr 480 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑅 ∈ Grp)
184, 12grpcl 18929 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
1917, 2, 3, 18syl3anc 1373 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑋 + 𝑌) ∈ 𝐵)
20 dvrdir.t . . . 4 / = (/r𝑅)
214, 13, 5, 8, 20dvrval 20368 . . 3 (((𝑋 + 𝑌) ∈ 𝐵𝑍𝑈) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)))
2219, 7, 21syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)))
234, 13, 5, 8, 20dvrval 20368 . . . 4 ((𝑋𝐵𝑍𝑈) → (𝑋 / 𝑍) = (𝑋(.r𝑅)((invr𝑅)‘𝑍)))
242, 7, 23syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑋 / 𝑍) = (𝑋(.r𝑅)((invr𝑅)‘𝑍)))
254, 13, 5, 8, 20dvrval 20368 . . . 4 ((𝑌𝐵𝑍𝑈) → (𝑌 / 𝑍) = (𝑌(.r𝑅)((invr𝑅)‘𝑍)))
263, 7, 25syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑌 / 𝑍) = (𝑌(.r𝑅)((invr𝑅)‘𝑍)))
2724, 26oveq12d 7428 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 / 𝑍) + (𝑌 / 𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
2815, 22, 273eqtr4d 2781 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  Grpcgrp 18921  Ringcrg 20198  Unitcui 20320  invrcinvr 20352  /rcdvr 20365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366
This theorem is referenced by:  lringuplu  20509  qqhghm  34024  qqhrhm  34025
  Copyright terms: Public domain W3C validator