Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrdir Structured version   Visualization version   GIF version

Theorem dvrdir 31532
Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b 𝐵 = (Base‘𝑅)
dvrdir.u 𝑈 = (Unit‘𝑅)
dvrdir.p + = (+g𝑅)
dvrdir.t / = (/r𝑅)
Assertion
Ref Expression
dvrdir ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍)))

Proof of Theorem dvrdir
StepHypRef Expression
1 simpl 484 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑅 ∈ Ring)
2 simpr1 1194 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑋𝐵)
3 simpr2 1195 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑌𝐵)
4 dvrdir.b . . . . 5 𝐵 = (Base‘𝑅)
5 dvrdir.u . . . . 5 𝑈 = (Unit‘𝑅)
64, 5unitss 19947 . . . 4 𝑈𝐵
7 simpr3 1196 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑍𝑈)
8 eqid 2736 . . . . . 6 (invr𝑅) = (invr𝑅)
95, 8unitinvcl 19961 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((invr𝑅)‘𝑍) ∈ 𝑈)
107, 9syldan 592 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝑈)
116, 10sselid 3924 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
12 dvrdir.p . . . 4 + = (+g𝑅)
13 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
144, 12, 13ringdir 19851 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ ((invr𝑅)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
151, 2, 3, 11, 14syl13anc 1372 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
16 ringgrp 19833 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1716adantr 482 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑅 ∈ Grp)
184, 12grpcl 18630 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
1917, 2, 3, 18syl3anc 1371 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑋 + 𝑌) ∈ 𝐵)
20 dvrdir.t . . . 4 / = (/r𝑅)
214, 13, 5, 8, 20dvrval 19972 . . 3 (((𝑋 + 𝑌) ∈ 𝐵𝑍𝑈) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)))
2219, 7, 21syl2anc 585 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)))
234, 13, 5, 8, 20dvrval 19972 . . . 4 ((𝑋𝐵𝑍𝑈) → (𝑋 / 𝑍) = (𝑋(.r𝑅)((invr𝑅)‘𝑍)))
242, 7, 23syl2anc 585 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑋 / 𝑍) = (𝑋(.r𝑅)((invr𝑅)‘𝑍)))
254, 13, 5, 8, 20dvrval 19972 . . . 4 ((𝑌𝐵𝑍𝑈) → (𝑌 / 𝑍) = (𝑌(.r𝑅)((invr𝑅)‘𝑍)))
263, 7, 25syl2anc 585 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑌 / 𝑍) = (𝑌(.r𝑅)((invr𝑅)‘𝑍)))
2724, 26oveq12d 7325 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 / 𝑍) + (𝑌 / 𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
2815, 22, 273eqtr4d 2786 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  Basecbs 16957  +gcplusg 17007  .rcmulr 17008  Grpcgrp 18622  Ringcrg 19828  Unitcui 19926  invrcinvr 19958  /rcdvr 19969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-tpos 8073  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-0g 17197  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-grp 18625  df-minusg 18626  df-mgp 19766  df-ur 19783  df-ring 19830  df-oppr 19907  df-dvdsr 19928  df-unit 19929  df-invr 19959  df-dvr 19970
This theorem is referenced by:  qqhghm  31983  qqhrhm  31984
  Copyright terms: Public domain W3C validator