Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrdir | Structured version Visualization version GIF version |
Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
Ref | Expression |
---|---|
dvrdir.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrdir.u | ⊢ 𝑈 = (Unit‘𝑅) |
dvrdir.p | ⊢ + = (+g‘𝑅) |
dvrdir.t | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
dvrdir | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ Ring) | |
2 | simpr1 1194 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑋 ∈ 𝐵) | |
3 | simpr2 1195 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑌 ∈ 𝐵) | |
4 | dvrdir.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
5 | dvrdir.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
6 | 4, 5 | unitss 19947 | . . . 4 ⊢ 𝑈 ⊆ 𝐵 |
7 | simpr3 1196 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑍 ∈ 𝑈) | |
8 | eqid 2736 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
9 | 5, 8 | unitinvcl 19961 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈) → ((invr‘𝑅)‘𝑍) ∈ 𝑈) |
10 | 7, 9 | syldan 592 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝑈) |
11 | 6, 10 | sselid 3924 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝐵) |
12 | dvrdir.p | . . . 4 ⊢ + = (+g‘𝑅) | |
13 | eqid 2736 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
14 | 4, 12, 13 | ringdir 19851 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
15 | 1, 2, 3, 11, 14 | syl13anc 1372 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
16 | ringgrp 19833 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
17 | 16 | adantr 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ Grp) |
18 | 4, 12 | grpcl 18630 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
19 | 17, 2, 3, 18 | syl3anc 1371 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝐵) |
20 | dvrdir.t | . . . 4 ⊢ / = (/r‘𝑅) | |
21 | 4, 13, 5, 8, 20 | dvrval 19972 | . . 3 ⊢ (((𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝑈) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
22 | 19, 7, 21 | syl2anc 585 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
23 | 4, 13, 5, 8, 20 | dvrval 19972 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈) → (𝑋 / 𝑍) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
24 | 2, 7, 23 | syl2anc 585 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 / 𝑍) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
25 | 4, 13, 5, 8, 20 | dvrval 19972 | . . . 4 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈) → (𝑌 / 𝑍) = (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
26 | 3, 7, 25 | syl2anc 585 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑌 / 𝑍) = (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
27 | 24, 26 | oveq12d 7325 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 / 𝑍) + (𝑌 / 𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
28 | 15, 22, 27 | 3eqtr4d 2786 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 +gcplusg 17007 .rcmulr 17008 Grpcgrp 18622 Ringcrg 19828 Unitcui 19926 invrcinvr 19958 /rcdvr 19969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-tpos 8073 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-minusg 18626 df-mgp 19766 df-ur 19783 df-ring 19830 df-oppr 19907 df-dvdsr 19928 df-unit 19929 df-invr 19959 df-dvr 19970 |
This theorem is referenced by: qqhghm 31983 qqhrhm 31984 |
Copyright terms: Public domain | W3C validator |