| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvrdir | Structured version Visualization version GIF version | ||
| Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
| Ref | Expression |
|---|---|
| dvrdir.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvrdir.u | ⊢ 𝑈 = (Unit‘𝑅) |
| dvrdir.p | ⊢ + = (+g‘𝑅) |
| dvrdir.t | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| dvrdir | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ Ring) | |
| 2 | simpr1 1195 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑋 ∈ 𝐵) | |
| 3 | simpr2 1196 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑌 ∈ 𝐵) | |
| 4 | dvrdir.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | dvrdir.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 6 | 4, 5 | unitss 20285 | . . . 4 ⊢ 𝑈 ⊆ 𝐵 |
| 7 | simpr3 1197 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑍 ∈ 𝑈) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 9 | 5, 8 | unitinvcl 20299 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈) → ((invr‘𝑅)‘𝑍) ∈ 𝑈) |
| 10 | 7, 9 | syldan 591 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝑈) |
| 11 | 6, 10 | sselid 3944 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝐵) |
| 12 | dvrdir.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 13 | eqid 2729 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 14 | 4, 12, 13 | ringdir 20171 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
| 15 | 1, 2, 3, 11, 14 | syl13anc 1374 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
| 16 | ringgrp 20147 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ Grp) |
| 18 | 4, 12 | grpcl 18873 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 19 | 17, 2, 3, 18 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝐵) |
| 20 | dvrdir.t | . . . 4 ⊢ / = (/r‘𝑅) | |
| 21 | 4, 13, 5, 8, 20 | dvrval 20312 | . . 3 ⊢ (((𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝑈) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
| 22 | 19, 7, 21 | syl2anc 584 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
| 23 | 4, 13, 5, 8, 20 | dvrval 20312 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈) → (𝑋 / 𝑍) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
| 24 | 2, 7, 23 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 / 𝑍) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
| 25 | 4, 13, 5, 8, 20 | dvrval 20312 | . . . 4 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈) → (𝑌 / 𝑍) = (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
| 26 | 3, 7, 25 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑌 / 𝑍) = (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
| 27 | 24, 26 | oveq12d 7405 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 / 𝑍) + (𝑌 / 𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
| 28 | 15, 22, 27 | 3eqtr4d 2774 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Grpcgrp 18865 Ringcrg 20142 Unitcui 20264 invrcinvr 20296 /rcdvr 20309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 |
| This theorem is referenced by: lringuplu 20453 qqhghm 33978 qqhrhm 33979 |
| Copyright terms: Public domain | W3C validator |