MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrdir Structured version   Visualization version   GIF version

Theorem dvrdir 20413
Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.)
Hypotheses
Ref Expression
dvrdir.b 𝐵 = (Base‘𝑅)
dvrdir.u 𝑈 = (Unit‘𝑅)
dvrdir.p + = (+g𝑅)
dvrdir.t / = (/r𝑅)
Assertion
Ref Expression
dvrdir ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍)))

Proof of Theorem dvrdir
StepHypRef Expression
1 simpl 482 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑅 ∈ Ring)
2 simpr1 1194 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑋𝐵)
3 simpr2 1195 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑌𝐵)
4 dvrdir.b . . . . 5 𝐵 = (Base‘𝑅)
5 dvrdir.u . . . . 5 𝑈 = (Unit‘𝑅)
64, 5unitss 20377 . . . 4 𝑈𝐵
7 simpr3 1196 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑍𝑈)
8 eqid 2736 . . . . . 6 (invr𝑅) = (invr𝑅)
95, 8unitinvcl 20391 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍𝑈) → ((invr𝑅)‘𝑍) ∈ 𝑈)
107, 9syldan 591 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝑈)
116, 10sselid 3980 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((invr𝑅)‘𝑍) ∈ 𝐵)
12 dvrdir.p . . . 4 + = (+g𝑅)
13 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
144, 12, 13ringdir 20260 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ ((invr𝑅)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
151, 2, 3, 11, 14syl13anc 1373 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
16 ringgrp 20236 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1716adantr 480 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → 𝑅 ∈ Grp)
184, 12grpcl 18960 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
1917, 2, 3, 18syl3anc 1372 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑋 + 𝑌) ∈ 𝐵)
20 dvrdir.t . . . 4 / = (/r𝑅)
214, 13, 5, 8, 20dvrval 20404 . . 3 (((𝑋 + 𝑌) ∈ 𝐵𝑍𝑈) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)))
2219, 7, 21syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r𝑅)((invr𝑅)‘𝑍)))
234, 13, 5, 8, 20dvrval 20404 . . . 4 ((𝑋𝐵𝑍𝑈) → (𝑋 / 𝑍) = (𝑋(.r𝑅)((invr𝑅)‘𝑍)))
242, 7, 23syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑋 / 𝑍) = (𝑋(.r𝑅)((invr𝑅)‘𝑍)))
254, 13, 5, 8, 20dvrval 20404 . . . 4 ((𝑌𝐵𝑍𝑈) → (𝑌 / 𝑍) = (𝑌(.r𝑅)((invr𝑅)‘𝑍)))
263, 7, 25syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → (𝑌 / 𝑍) = (𝑌(.r𝑅)((invr𝑅)‘𝑍)))
2724, 26oveq12d 7450 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 / 𝑍) + (𝑌 / 𝑍)) = ((𝑋(.r𝑅)((invr𝑅)‘𝑍)) + (𝑌(.r𝑅)((invr𝑅)‘𝑍))))
2815, 22, 273eqtr4d 2786 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  Grpcgrp 18952  Ringcrg 20231  Unitcui 20356  invrcinvr 20388  /rcdvr 20401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402
This theorem is referenced by:  lringuplu  20545  qqhghm  33990  qqhrhm  33991
  Copyright terms: Public domain W3C validator