| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r1pcyc | Structured version Visualization version GIF version | ||
| Description: The polynomial remainder operation is periodic. See modcyc 13923. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| r1padd1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| r1padd1.u | ⊢ 𝑈 = (Base‘𝑃) |
| r1padd1.n | ⊢ 𝑁 = (Unic1p‘𝑅) |
| r1padd1.e | ⊢ 𝐸 = (rem1p‘𝑅) |
| r1pcyc.p | ⊢ + = (+g‘𝑃) |
| r1pcyc.m | ⊢ · = (.r‘𝑃) |
| r1pcyc.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| r1pcyc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| r1pcyc.b | ⊢ (𝜑 → 𝐵 ∈ 𝑁) |
| r1pcyc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| r1pcyc | ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1pcyc.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | r1padd1.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | 2 | ply1ring 22183 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 5 | 4 | ringgrpd 20202 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 6 | r1pcyc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 7 | r1padd1.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 8 | r1pcyc.m | . . . 4 ⊢ · = (.r‘𝑃) | |
| 9 | r1pcyc.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑁) | |
| 10 | eqid 2735 | . . . . . 6 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
| 11 | r1padd1.n | . . . . . 6 ⊢ 𝑁 = (Unic1p‘𝑅) | |
| 12 | 10, 2, 7, 11 | q1pcl 26114 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 13 | 1, 6, 9, 12 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 14 | 2, 7, 11 | uc1pcl 26101 | . . . . 5 ⊢ (𝐵 ∈ 𝑁 → 𝐵 ∈ 𝑈) |
| 15 | 9, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| 16 | 7, 8, 4, 13, 15 | ringcld 20220 | . . 3 ⊢ (𝜑 → ((𝐴(quot1p‘𝑅)𝐵) · 𝐵) ∈ 𝑈) |
| 17 | r1pcyc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 18 | 7, 8, 4, 17, 15 | ringcld 20220 | . . 3 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ 𝑈) |
| 19 | r1pcyc.p | . . . 4 ⊢ + = (+g‘𝑃) | |
| 20 | eqid 2735 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 21 | 7, 19, 20 | grppnpcan2 19017 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ (𝐴 ∈ 𝑈 ∧ ((𝐴(quot1p‘𝑅)𝐵) · 𝐵) ∈ 𝑈 ∧ (𝐶 · 𝐵) ∈ 𝑈)) → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 22 | 5, 6, 16, 18, 21 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 23 | 7, 19, 5, 6, 18 | grpcld 18930 | . . . 4 ⊢ (𝜑 → (𝐴 + (𝐶 · 𝐵)) ∈ 𝑈) |
| 24 | r1padd1.e | . . . . 5 ⊢ 𝐸 = (rem1p‘𝑅) | |
| 25 | 24, 2, 7, 10, 8, 20 | r1pval 26115 | . . . 4 ⊢ (((𝐴 + (𝐶 · 𝐵)) ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵))) |
| 26 | 23, 15, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵))) |
| 27 | 10, 2, 7, 11 | q1pcl 26114 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 · 𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 28 | 1, 18, 9, 27 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 29 | 7, 19, 8 | ringdir 20222 | . . . . . 6 ⊢ ((𝑃 ∈ Ring ∧ ((𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈 ∧ ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑈)) → (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 30 | 4, 13, 28, 15, 29 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 31 | 2, 7, 11, 10, 1, 6, 9, 18, 19 | q1pdir 33612 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) = ((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵))) |
| 32 | 31 | oveq1d 7420 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵)) |
| 33 | eqid 2735 | . . . . . . . . 9 ⊢ (∥r‘𝑃) = (∥r‘𝑃) | |
| 34 | 7, 33, 8 | dvdsrmul 20324 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈) → 𝐵(∥r‘𝑃)(𝐶 · 𝐵)) |
| 35 | 15, 17, 34 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝐵(∥r‘𝑃)(𝐶 · 𝐵)) |
| 36 | 2, 33, 7, 11, 8, 10 | dvdsq1p 26120 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 · 𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐵(∥r‘𝑃)(𝐶 · 𝐵) ↔ (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 37 | 1, 18, 9, 36 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐵(∥r‘𝑃)(𝐶 · 𝐵) ↔ (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 38 | 35, 37 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵)) |
| 39 | 38 | oveq2d 7421 | . . . . 5 ⊢ (𝜑 → (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 40 | 30, 32, 39 | 3eqtr4d 2780 | . . . 4 ⊢ (𝜑 → (((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) |
| 41 | 40 | oveq2d 7421 | . . 3 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵)) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)))) |
| 42 | 26, 41 | eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)))) |
| 43 | 24, 2, 7, 10, 8, 20 | r1pval 26115 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴𝐸𝐵) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 44 | 6, 15, 43 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴𝐸𝐵) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 45 | 22, 42, 44 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 .rcmulr 17272 Grpcgrp 18916 -gcsg 18918 Ringcrg 20193 ∥rcdsr 20314 Poly1cpl1 22112 Unic1pcuc1p 26084 quot1pcq1p 26085 rem1pcr1p 26086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-cring 20196 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-subrng 20506 df-subrg 20530 df-rlreg 20654 df-lmod 20819 df-lss 20889 df-cnfld 21316 df-psr 21869 df-mvr 21870 df-mpl 21871 df-opsr 21873 df-psr1 22115 df-vr1 22116 df-ply1 22117 df-coe1 22118 df-mdeg 26012 df-deg1 26013 df-uc1p 26089 df-q1p 26090 df-r1p 26091 |
| This theorem is referenced by: r1padd1 33617 |
| Copyright terms: Public domain | W3C validator |