| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r1pcyc | Structured version Visualization version GIF version | ||
| Description: The polynomial remainder operation is periodic. See modcyc 13875. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| r1padd1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| r1padd1.u | ⊢ 𝑈 = (Base‘𝑃) |
| r1padd1.n | ⊢ 𝑁 = (Unic1p‘𝑅) |
| r1padd1.e | ⊢ 𝐸 = (rem1p‘𝑅) |
| r1pcyc.p | ⊢ + = (+g‘𝑃) |
| r1pcyc.m | ⊢ · = (.r‘𝑃) |
| r1pcyc.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| r1pcyc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| r1pcyc.b | ⊢ (𝜑 → 𝐵 ∈ 𝑁) |
| r1pcyc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| r1pcyc | ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1pcyc.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | r1padd1.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | 2 | ply1ring 22139 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 5 | 4 | ringgrpd 20158 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 6 | r1pcyc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 7 | r1padd1.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 8 | r1pcyc.m | . . . 4 ⊢ · = (.r‘𝑃) | |
| 9 | r1pcyc.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑁) | |
| 10 | eqid 2730 | . . . . . 6 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
| 11 | r1padd1.n | . . . . . 6 ⊢ 𝑁 = (Unic1p‘𝑅) | |
| 12 | 10, 2, 7, 11 | q1pcl 26069 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 13 | 1, 6, 9, 12 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 14 | 2, 7, 11 | uc1pcl 26056 | . . . . 5 ⊢ (𝐵 ∈ 𝑁 → 𝐵 ∈ 𝑈) |
| 15 | 9, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| 16 | 7, 8, 4, 13, 15 | ringcld 20176 | . . 3 ⊢ (𝜑 → ((𝐴(quot1p‘𝑅)𝐵) · 𝐵) ∈ 𝑈) |
| 17 | r1pcyc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 18 | 7, 8, 4, 17, 15 | ringcld 20176 | . . 3 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ 𝑈) |
| 19 | r1pcyc.p | . . . 4 ⊢ + = (+g‘𝑃) | |
| 20 | eqid 2730 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 21 | 7, 19, 20 | grppnpcan2 18973 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ (𝐴 ∈ 𝑈 ∧ ((𝐴(quot1p‘𝑅)𝐵) · 𝐵) ∈ 𝑈 ∧ (𝐶 · 𝐵) ∈ 𝑈)) → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 22 | 5, 6, 16, 18, 21 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 23 | 7, 19, 5, 6, 18 | grpcld 18886 | . . . 4 ⊢ (𝜑 → (𝐴 + (𝐶 · 𝐵)) ∈ 𝑈) |
| 24 | r1padd1.e | . . . . 5 ⊢ 𝐸 = (rem1p‘𝑅) | |
| 25 | 24, 2, 7, 10, 8, 20 | r1pval 26070 | . . . 4 ⊢ (((𝐴 + (𝐶 · 𝐵)) ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵))) |
| 26 | 23, 15, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵))) |
| 27 | 10, 2, 7, 11 | q1pcl 26069 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 · 𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 28 | 1, 18, 9, 27 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 29 | 7, 19, 8 | ringdir 20178 | . . . . . 6 ⊢ ((𝑃 ∈ Ring ∧ ((𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈 ∧ ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑈)) → (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 30 | 4, 13, 28, 15, 29 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 31 | 2, 7, 11, 10, 1, 6, 9, 18, 19 | q1pdir 33575 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) = ((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵))) |
| 32 | 31 | oveq1d 7405 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵)) |
| 33 | eqid 2730 | . . . . . . . . 9 ⊢ (∥r‘𝑃) = (∥r‘𝑃) | |
| 34 | 7, 33, 8 | dvdsrmul 20280 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈) → 𝐵(∥r‘𝑃)(𝐶 · 𝐵)) |
| 35 | 15, 17, 34 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝐵(∥r‘𝑃)(𝐶 · 𝐵)) |
| 36 | 2, 33, 7, 11, 8, 10 | dvdsq1p 26075 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 · 𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐵(∥r‘𝑃)(𝐶 · 𝐵) ↔ (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 37 | 1, 18, 9, 36 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐵(∥r‘𝑃)(𝐶 · 𝐵) ↔ (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 38 | 35, 37 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵)) |
| 39 | 38 | oveq2d 7406 | . . . . 5 ⊢ (𝜑 → (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 40 | 30, 32, 39 | 3eqtr4d 2775 | . . . 4 ⊢ (𝜑 → (((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) |
| 41 | 40 | oveq2d 7406 | . . 3 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵)) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)))) |
| 42 | 26, 41 | eqtrd 2765 | . 2 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)))) |
| 43 | 24, 2, 7, 10, 8, 20 | r1pval 26070 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴𝐸𝐵) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 44 | 6, 15, 43 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴𝐸𝐵) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 45 | 22, 42, 44 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Grpcgrp 18872 -gcsg 18874 Ringcrg 20149 ∥rcdsr 20270 Poly1cpl1 22068 Unic1pcuc1p 26039 quot1pcq1p 26040 rem1pcr1p 26041 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-subrng 20462 df-subrg 20486 df-rlreg 20610 df-lmod 20775 df-lss 20845 df-cnfld 21272 df-psr 21825 df-mvr 21826 df-mpl 21827 df-opsr 21829 df-psr1 22071 df-vr1 22072 df-ply1 22073 df-coe1 22074 df-mdeg 25967 df-deg1 25968 df-uc1p 26044 df-q1p 26045 df-r1p 26046 |
| This theorem is referenced by: r1padd1 33580 |
| Copyright terms: Public domain | W3C validator |