![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > r1pcyc | Structured version Visualization version GIF version |
Description: The polynomial remainder operation is periodic. See modcyc 13878. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
r1padd1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
r1padd1.u | ⊢ 𝑈 = (Base‘𝑃) |
r1padd1.n | ⊢ 𝑁 = (Unic1p‘𝑅) |
r1padd1.e | ⊢ 𝐸 = (rem1p‘𝑅) |
r1pcyc.p | ⊢ + = (+g‘𝑃) |
r1pcyc.m | ⊢ · = (.r‘𝑃) |
r1pcyc.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
r1pcyc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
r1pcyc.b | ⊢ (𝜑 → 𝐵 ∈ 𝑁) |
r1pcyc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
Ref | Expression |
---|---|
r1pcyc | ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1pcyc.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | r1padd1.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | 2 | ply1ring 22003 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Ring) |
5 | 4 | ringgrpd 20140 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
6 | r1pcyc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
7 | r1padd1.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
8 | r1pcyc.m | . . . 4 ⊢ · = (.r‘𝑃) | |
9 | r1pcyc.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑁) | |
10 | eqid 2731 | . . . . . 6 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
11 | r1padd1.n | . . . . . 6 ⊢ 𝑁 = (Unic1p‘𝑅) | |
12 | 10, 2, 7, 11 | q1pcl 25922 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
13 | 1, 6, 9, 12 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
14 | 2, 7, 11 | uc1pcl 25910 | . . . . 5 ⊢ (𝐵 ∈ 𝑁 → 𝐵 ∈ 𝑈) |
15 | 9, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
16 | 7, 8, 4, 13, 15 | ringcld 20155 | . . 3 ⊢ (𝜑 → ((𝐴(quot1p‘𝑅)𝐵) · 𝐵) ∈ 𝑈) |
17 | r1pcyc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
18 | 7, 8, 4, 17, 15 | ringcld 20155 | . . 3 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ 𝑈) |
19 | r1pcyc.p | . . . 4 ⊢ + = (+g‘𝑃) | |
20 | eqid 2731 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
21 | 7, 19, 20 | grppnpcan2 18957 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ (𝐴 ∈ 𝑈 ∧ ((𝐴(quot1p‘𝑅)𝐵) · 𝐵) ∈ 𝑈 ∧ (𝐶 · 𝐵) ∈ 𝑈)) → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
22 | 5, 6, 16, 18, 21 | syl13anc 1371 | . 2 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
23 | 7, 19, 5, 6, 18 | grpcld 18872 | . . . 4 ⊢ (𝜑 → (𝐴 + (𝐶 · 𝐵)) ∈ 𝑈) |
24 | r1padd1.e | . . . . 5 ⊢ 𝐸 = (rem1p‘𝑅) | |
25 | 24, 2, 7, 10, 8, 20 | r1pval 25923 | . . . 4 ⊢ (((𝐴 + (𝐶 · 𝐵)) ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵))) |
26 | 23, 15, 25 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵))) |
27 | 10, 2, 7, 11 | q1pcl 25922 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 · 𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈) |
28 | 1, 18, 9, 27 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈) |
29 | 7, 19, 8 | ringdir 20157 | . . . . . 6 ⊢ ((𝑃 ∈ Ring ∧ ((𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈 ∧ ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑈)) → (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
30 | 4, 13, 28, 15, 29 | syl13anc 1371 | . . . . 5 ⊢ (𝜑 → (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
31 | 2, 7, 11, 10, 1, 6, 9, 18, 19 | q1pdir 32963 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) = ((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵))) |
32 | 31 | oveq1d 7427 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵)) |
33 | eqid 2731 | . . . . . . . . 9 ⊢ (∥r‘𝑃) = (∥r‘𝑃) | |
34 | 7, 33, 8 | dvdsrmul 20259 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈) → 𝐵(∥r‘𝑃)(𝐶 · 𝐵)) |
35 | 15, 17, 34 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → 𝐵(∥r‘𝑃)(𝐶 · 𝐵)) |
36 | 2, 33, 7, 11, 8, 10 | dvdsq1p 25927 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 · 𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐵(∥r‘𝑃)(𝐶 · 𝐵) ↔ (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
37 | 1, 18, 9, 36 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → (𝐵(∥r‘𝑃)(𝐶 · 𝐵) ↔ (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
38 | 35, 37 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵)) |
39 | 38 | oveq2d 7428 | . . . . 5 ⊢ (𝜑 → (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
40 | 30, 32, 39 | 3eqtr4d 2781 | . . . 4 ⊢ (𝜑 → (((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) |
41 | 40 | oveq2d 7428 | . . 3 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵)) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)))) |
42 | 26, 41 | eqtrd 2771 | . 2 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)))) |
43 | 24, 2, 7, 10, 8, 20 | r1pval 25923 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴𝐸𝐵) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
44 | 6, 15, 43 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐴𝐸𝐵) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
45 | 22, 42, 44 | 3eqtr4d 2781 | 1 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 .rcmulr 17205 Grpcgrp 18858 -gcsg 18860 Ringcrg 20131 ∥rcdsr 20249 Poly1cpl1 21933 Unic1pcuc1p 25893 quot1pcq1p 25894 rem1pcr1p 25895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-ofr 7675 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-sup 9443 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-0g 17394 df-gsum 17395 df-prds 17400 df-pws 17402 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-mhm 18708 df-submnd 18709 df-grp 18861 df-minusg 18862 df-sbg 18863 df-mulg 18991 df-subg 19043 df-ghm 19132 df-cntz 19226 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-cring 20134 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-invr 20283 df-subrng 20438 df-subrg 20463 df-lmod 20620 df-lss 20691 df-rlreg 21103 df-cnfld 21149 df-psr 21685 df-mvr 21686 df-mpl 21687 df-opsr 21689 df-psr1 21936 df-vr1 21937 df-ply1 21938 df-coe1 21939 df-mdeg 25819 df-deg1 25820 df-uc1p 25898 df-q1p 25899 df-r1p 25900 |
This theorem is referenced by: r1padd1 32968 |
Copyright terms: Public domain | W3C validator |