| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > r1pcyc | Structured version Visualization version GIF version | ||
| Description: The polynomial remainder operation is periodic. See modcyc 13868. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| r1padd1.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| r1padd1.u | ⊢ 𝑈 = (Base‘𝑃) |
| r1padd1.n | ⊢ 𝑁 = (Unic1p‘𝑅) |
| r1padd1.e | ⊢ 𝐸 = (rem1p‘𝑅) |
| r1pcyc.p | ⊢ + = (+g‘𝑃) |
| r1pcyc.m | ⊢ · = (.r‘𝑃) |
| r1pcyc.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| r1pcyc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| r1pcyc.b | ⊢ (𝜑 → 𝐵 ∈ 𝑁) |
| r1pcyc.c | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| r1pcyc | ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1pcyc.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | r1padd1.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | 2 | ply1ring 22132 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ Ring) |
| 5 | 4 | ringgrpd 20151 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 6 | r1pcyc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 7 | r1padd1.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 8 | r1pcyc.m | . . . 4 ⊢ · = (.r‘𝑃) | |
| 9 | r1pcyc.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑁) | |
| 10 | eqid 2729 | . . . . . 6 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
| 11 | r1padd1.n | . . . . . 6 ⊢ 𝑁 = (Unic1p‘𝑅) | |
| 12 | 10, 2, 7, 11 | q1pcl 26062 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 13 | 1, 6, 9, 12 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 14 | 2, 7, 11 | uc1pcl 26049 | . . . . 5 ⊢ (𝐵 ∈ 𝑁 → 𝐵 ∈ 𝑈) |
| 15 | 9, 14 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| 16 | 7, 8, 4, 13, 15 | ringcld 20169 | . . 3 ⊢ (𝜑 → ((𝐴(quot1p‘𝑅)𝐵) · 𝐵) ∈ 𝑈) |
| 17 | r1pcyc.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 18 | 7, 8, 4, 17, 15 | ringcld 20169 | . . 3 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ 𝑈) |
| 19 | r1pcyc.p | . . . 4 ⊢ + = (+g‘𝑃) | |
| 20 | eqid 2729 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 21 | 7, 19, 20 | grppnpcan2 18966 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ (𝐴 ∈ 𝑈 ∧ ((𝐴(quot1p‘𝑅)𝐵) · 𝐵) ∈ 𝑈 ∧ (𝐶 · 𝐵) ∈ 𝑈)) → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 22 | 5, 6, 16, 18, 21 | syl13anc 1374 | . 2 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 23 | 7, 19, 5, 6, 18 | grpcld 18879 | . . . 4 ⊢ (𝜑 → (𝐴 + (𝐶 · 𝐵)) ∈ 𝑈) |
| 24 | r1padd1.e | . . . . 5 ⊢ 𝐸 = (rem1p‘𝑅) | |
| 25 | 24, 2, 7, 10, 8, 20 | r1pval 26063 | . . . 4 ⊢ (((𝐴 + (𝐶 · 𝐵)) ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵))) |
| 26 | 23, 15, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵))) |
| 27 | 10, 2, 7, 11 | q1pcl 26062 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 · 𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 28 | 1, 18, 9, 27 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈) |
| 29 | 7, 19, 8 | ringdir 20171 | . . . . . 6 ⊢ ((𝑃 ∈ Ring ∧ ((𝐴(quot1p‘𝑅)𝐵) ∈ 𝑈 ∧ ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑈)) → (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 30 | 4, 13, 28, 15, 29 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 31 | 2, 7, 11, 10, 1, 6, 9, 18, 19 | q1pdir 33568 | . . . . . 6 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) = ((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵))) |
| 32 | 31 | oveq1d 7402 | . . . . 5 ⊢ (𝜑 → (((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p‘𝑅)𝐵)) · 𝐵)) |
| 33 | eqid 2729 | . . . . . . . . 9 ⊢ (∥r‘𝑃) = (∥r‘𝑃) | |
| 34 | 7, 33, 8 | dvdsrmul 20273 | . . . . . . . 8 ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈) → 𝐵(∥r‘𝑃)(𝐶 · 𝐵)) |
| 35 | 15, 17, 34 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝐵(∥r‘𝑃)(𝐶 · 𝐵)) |
| 36 | 2, 33, 7, 11, 8, 10 | dvdsq1p 26068 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 · 𝐵) ∈ 𝑈 ∧ 𝐵 ∈ 𝑁) → (𝐵(∥r‘𝑃)(𝐶 · 𝐵) ↔ (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 37 | 1, 18, 9, 36 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐵(∥r‘𝑃)(𝐶 · 𝐵) ↔ (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 38 | 35, 37 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵)) |
| 39 | 38 | oveq2d 7403 | . . . . 5 ⊢ (𝜑 → (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p‘𝑅)𝐵) · 𝐵))) |
| 40 | 30, 32, 39 | 3eqtr4d 2774 | . . . 4 ⊢ (𝜑 → (((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵) = (((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) |
| 41 | 40 | oveq2d 7403 | . . 3 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p‘𝑅)𝐵) · 𝐵)) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)))) |
| 42 | 26, 41 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g‘𝑃)(((𝐴(quot1p‘𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)))) |
| 43 | 24, 2, 7, 10, 8, 20 | r1pval 26063 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴𝐸𝐵) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 44 | 6, 15, 43 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴𝐸𝐵) = (𝐴(-g‘𝑃)((𝐴(quot1p‘𝑅)𝐵) · 𝐵))) |
| 45 | 22, 42, 44 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Grpcgrp 18865 -gcsg 18867 Ringcrg 20142 ∥rcdsr 20263 Poly1cpl1 22061 Unic1pcuc1p 26032 quot1pcq1p 26033 rem1pcr1p 26034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-subrng 20455 df-subrg 20479 df-rlreg 20603 df-lmod 20768 df-lss 20838 df-cnfld 21265 df-psr 21818 df-mvr 21819 df-mpl 21820 df-opsr 21822 df-psr1 22064 df-vr1 22065 df-ply1 22066 df-coe1 22067 df-mdeg 25960 df-deg1 25961 df-uc1p 26037 df-q1p 26038 df-r1p 26039 |
| This theorem is referenced by: r1padd1 33573 |
| Copyright terms: Public domain | W3C validator |