Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1pcyc Structured version   Visualization version   GIF version

Theorem r1pcyc 33545
Description: The polynomial remainder operation is periodic. See modcyc 13844. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
r1padd1.p 𝑃 = (Poly1𝑅)
r1padd1.u 𝑈 = (Base‘𝑃)
r1padd1.n 𝑁 = (Unic1p𝑅)
r1padd1.e 𝐸 = (rem1p𝑅)
r1pcyc.p + = (+g𝑃)
r1pcyc.m · = (.r𝑃)
r1pcyc.r (𝜑𝑅 ∈ Ring)
r1pcyc.a (𝜑𝐴𝑈)
r1pcyc.b (𝜑𝐵𝑁)
r1pcyc.c (𝜑𝐶𝑈)
Assertion
Ref Expression
r1pcyc (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵))

Proof of Theorem r1pcyc
StepHypRef Expression
1 r1pcyc.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 r1padd1.p . . . . . 6 𝑃 = (Poly1𝑅)
32ply1ring 22108 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
54ringgrpd 20127 . . 3 (𝜑𝑃 ∈ Grp)
6 r1pcyc.a . . 3 (𝜑𝐴𝑈)
7 r1padd1.u . . . 4 𝑈 = (Base‘𝑃)
8 r1pcyc.m . . . 4 · = (.r𝑃)
9 r1pcyc.b . . . . 5 (𝜑𝐵𝑁)
10 eqid 2729 . . . . . 6 (quot1p𝑅) = (quot1p𝑅)
11 r1padd1.n . . . . . 6 𝑁 = (Unic1p𝑅)
1210, 2, 7, 11q1pcl 26038 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐴𝑈𝐵𝑁) → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
131, 6, 9, 12syl3anc 1373 . . . 4 (𝜑 → (𝐴(quot1p𝑅)𝐵) ∈ 𝑈)
142, 7, 11uc1pcl 26025 . . . . 5 (𝐵𝑁𝐵𝑈)
159, 14syl 17 . . . 4 (𝜑𝐵𝑈)
167, 8, 4, 13, 15ringcld 20145 . . 3 (𝜑 → ((𝐴(quot1p𝑅)𝐵) · 𝐵) ∈ 𝑈)
17 r1pcyc.c . . . 4 (𝜑𝐶𝑈)
187, 8, 4, 17, 15ringcld 20145 . . 3 (𝜑 → (𝐶 · 𝐵) ∈ 𝑈)
19 r1pcyc.p . . . 4 + = (+g𝑃)
20 eqid 2729 . . . 4 (-g𝑃) = (-g𝑃)
217, 19, 20grppnpcan2 18942 . . 3 ((𝑃 ∈ Grp ∧ (𝐴𝑈 ∧ ((𝐴(quot1p𝑅)𝐵) · 𝐵) ∈ 𝑈 ∧ (𝐶 · 𝐵) ∈ 𝑈)) → ((𝐴 + (𝐶 · 𝐵))(-g𝑃)(((𝐴(quot1p𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐵) · 𝐵)))
225, 6, 16, 18, 21syl13anc 1374 . 2 (𝜑 → ((𝐴 + (𝐶 · 𝐵))(-g𝑃)(((𝐴(quot1p𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐵) · 𝐵)))
237, 19, 5, 6, 18grpcld 18855 . . . 4 (𝜑 → (𝐴 + (𝐶 · 𝐵)) ∈ 𝑈)
24 r1padd1.e . . . . 5 𝐸 = (rem1p𝑅)
2524, 2, 7, 10, 8, 20r1pval 26039 . . . 4 (((𝐴 + (𝐶 · 𝐵)) ∈ 𝑈𝐵𝑈) → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p𝑅)𝐵) · 𝐵)))
2623, 15, 25syl2anc 584 . . 3 (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p𝑅)𝐵) · 𝐵)))
2710, 2, 7, 11q1pcl 26038 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐶 · 𝐵) ∈ 𝑈𝐵𝑁) → ((𝐶 · 𝐵)(quot1p𝑅)𝐵) ∈ 𝑈)
281, 18, 9, 27syl3anc 1373 . . . . . 6 (𝜑 → ((𝐶 · 𝐵)(quot1p𝑅)𝐵) ∈ 𝑈)
297, 19, 8ringdir 20147 . . . . . 6 ((𝑃 ∈ Ring ∧ ((𝐴(quot1p𝑅)𝐵) ∈ 𝑈 ∧ ((𝐶 · 𝐵)(quot1p𝑅)𝐵) ∈ 𝑈𝐵𝑈)) → (((𝐴(quot1p𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p𝑅)𝐵)) · 𝐵) = (((𝐴(quot1p𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p𝑅)𝐵) · 𝐵)))
304, 13, 28, 15, 29syl13anc 1374 . . . . 5 (𝜑 → (((𝐴(quot1p𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p𝑅)𝐵)) · 𝐵) = (((𝐴(quot1p𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p𝑅)𝐵) · 𝐵)))
312, 7, 11, 10, 1, 6, 9, 18, 19q1pdir 33541 . . . . . 6 (𝜑 → ((𝐴 + (𝐶 · 𝐵))(quot1p𝑅)𝐵) = ((𝐴(quot1p𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p𝑅)𝐵)))
3231oveq1d 7384 . . . . 5 (𝜑 → (((𝐴 + (𝐶 · 𝐵))(quot1p𝑅)𝐵) · 𝐵) = (((𝐴(quot1p𝑅)𝐵) + ((𝐶 · 𝐵)(quot1p𝑅)𝐵)) · 𝐵))
33 eqid 2729 . . . . . . . . 9 (∥r𝑃) = (∥r𝑃)
347, 33, 8dvdsrmul 20249 . . . . . . . 8 ((𝐵𝑈𝐶𝑈) → 𝐵(∥r𝑃)(𝐶 · 𝐵))
3515, 17, 34syl2anc 584 . . . . . . 7 (𝜑𝐵(∥r𝑃)(𝐶 · 𝐵))
362, 33, 7, 11, 8, 10dvdsq1p 26044 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐶 · 𝐵) ∈ 𝑈𝐵𝑁) → (𝐵(∥r𝑃)(𝐶 · 𝐵) ↔ (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p𝑅)𝐵) · 𝐵)))
371, 18, 9, 36syl3anc 1373 . . . . . . 7 (𝜑 → (𝐵(∥r𝑃)(𝐶 · 𝐵) ↔ (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p𝑅)𝐵) · 𝐵)))
3835, 37mpbid 232 . . . . . 6 (𝜑 → (𝐶 · 𝐵) = (((𝐶 · 𝐵)(quot1p𝑅)𝐵) · 𝐵))
3938oveq2d 7385 . . . . 5 (𝜑 → (((𝐴(quot1p𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)) = (((𝐴(quot1p𝑅)𝐵) · 𝐵) + (((𝐶 · 𝐵)(quot1p𝑅)𝐵) · 𝐵)))
4030, 32, 393eqtr4d 2774 . . . 4 (𝜑 → (((𝐴 + (𝐶 · 𝐵))(quot1p𝑅)𝐵) · 𝐵) = (((𝐴(quot1p𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵)))
4140oveq2d 7385 . . 3 (𝜑 → ((𝐴 + (𝐶 · 𝐵))(-g𝑃)(((𝐴 + (𝐶 · 𝐵))(quot1p𝑅)𝐵) · 𝐵)) = ((𝐴 + (𝐶 · 𝐵))(-g𝑃)(((𝐴(quot1p𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))))
4226, 41eqtrd 2764 . 2 (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = ((𝐴 + (𝐶 · 𝐵))(-g𝑃)(((𝐴(quot1p𝑅)𝐵) · 𝐵) + (𝐶 · 𝐵))))
4324, 2, 7, 10, 8, 20r1pval 26039 . . 3 ((𝐴𝑈𝐵𝑈) → (𝐴𝐸𝐵) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐵) · 𝐵)))
446, 15, 43syl2anc 584 . 2 (𝜑 → (𝐴𝐸𝐵) = (𝐴(-g𝑃)((𝐴(quot1p𝑅)𝐵) · 𝐵)))
4522, 42, 443eqtr4d 2774 1 (𝜑 → ((𝐴 + (𝐶 · 𝐵))𝐸𝐵) = (𝐴𝐸𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Grpcgrp 18841  -gcsg 18843  Ringcrg 20118  rcdsr 20239  Poly1cpl1 22037  Unic1pcuc1p 26008  quot1pcq1p 26009  rem1pcr1p 26010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-lmod 20744  df-lss 20814  df-cnfld 21241  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-mdeg 25936  df-deg1 25937  df-uc1p 26013  df-q1p 26014  df-r1p 26015
This theorem is referenced by:  r1padd1  33546
  Copyright terms: Public domain W3C validator