MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudi Structured version   Visualization version   GIF version

Theorem mamudi 21766
Description: Matrix multiplication distributes over addition on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamudi.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamudi.m (𝜑𝑀 ∈ Fin)
mamudi.n (𝜑𝑁 ∈ Fin)
mamudi.o (𝜑𝑂 ∈ Fin)
mamudi.p + = (+g𝑅)
mamudi.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamudi.y (𝜑𝑌 ∈ (𝐵m (𝑀 × 𝑁)))
mamudi.z (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
Assertion
Ref Expression
mamudi (𝜑 → ((𝑋f + 𝑌)𝐹𝑍) = ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)))

Proof of Theorem mamudi
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamudi.p . . . . . 6 + = (+g𝑅)
3 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ringcmn 20010 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ CMnd)
7 mamudi.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
87adantr 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
93ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
10 mamudi.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
11 elmapi 8794 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1312ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
14 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
15 simpr 486 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
1613, 14, 15fovcdmd 7531 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
17 mamudi.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
18 elmapi 8794 . . . . . . . . . 10 (𝑍 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
1917, 18syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
2019ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
21 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
2220, 15, 21fovcdmd 7531 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
23 eqid 2737 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 23ringcl 19988 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
259, 16, 22, 24syl3anc 1372 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
26 mamudi.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵m (𝑀 × 𝑁)))
27 elmapi 8794 . . . . . . . . . 10 (𝑌 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑀 × 𝑁)⟶𝐵)
2928ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
3029, 14, 15fovcdmd 7531 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑌𝑗) ∈ 𝐵)
311, 23ringcl 19988 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
329, 30, 22, 31syl3anc 1372 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
33 eqid 2737 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))
34 eqid 2737 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))
351, 2, 6, 8, 25, 32, 33, 34gsummptfidmadd2 19710 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
3610ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
37 ffn 6673 . . . . . . . . . . . . 13 (𝑋:(𝑀 × 𝑁)⟶𝐵𝑋 Fn (𝑀 × 𝑁))
3836, 11, 373syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋 Fn (𝑀 × 𝑁))
3926ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 ∈ (𝐵m (𝑀 × 𝑁)))
40 ffn 6673 . . . . . . . . . . . . 13 (𝑌:(𝑀 × 𝑁)⟶𝐵𝑌 Fn (𝑀 × 𝑁))
4139, 27, 403syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 Fn (𝑀 × 𝑁))
42 mamudi.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Fin)
43 xpfi 9268 . . . . . . . . . . . . . 14 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
4442, 7, 43syl2anc 585 . . . . . . . . . . . . 13 (𝜑 → (𝑀 × 𝑁) ∈ Fin)
4544ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑀 × 𝑁) ∈ Fin)
46 opelxpi 5675 . . . . . . . . . . . . . 14 ((𝑖𝑀𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
4746adantlr 714 . . . . . . . . . . . . 13 (((𝑖𝑀𝑘𝑂) ∧ 𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
4847adantll 713 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
49 fnfvof 7639 . . . . . . . . . . . 12 (((𝑋 Fn (𝑀 × 𝑁) ∧ 𝑌 Fn (𝑀 × 𝑁)) ∧ ((𝑀 × 𝑁) ∈ Fin ∧ ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))) → ((𝑋f + 𝑌)‘⟨𝑖, 𝑗⟩) = ((𝑋‘⟨𝑖, 𝑗⟩) + (𝑌‘⟨𝑖, 𝑗⟩)))
5038, 41, 45, 48, 49syl22anc 838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑋f + 𝑌)‘⟨𝑖, 𝑗⟩) = ((𝑋‘⟨𝑖, 𝑗⟩) + (𝑌‘⟨𝑖, 𝑗⟩)))
51 df-ov 7365 . . . . . . . . . . 11 (𝑖(𝑋f + 𝑌)𝑗) = ((𝑋f + 𝑌)‘⟨𝑖, 𝑗⟩)
52 df-ov 7365 . . . . . . . . . . . 12 (𝑖𝑋𝑗) = (𝑋‘⟨𝑖, 𝑗⟩)
53 df-ov 7365 . . . . . . . . . . . 12 (𝑖𝑌𝑗) = (𝑌‘⟨𝑖, 𝑗⟩)
5452, 53oveq12i 7374 . . . . . . . . . . 11 ((𝑖𝑋𝑗) + (𝑖𝑌𝑗)) = ((𝑋‘⟨𝑖, 𝑗⟩) + (𝑌‘⟨𝑖, 𝑗⟩))
5550, 51, 543eqtr4g 2802 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖(𝑋f + 𝑌)𝑗) = ((𝑖𝑋𝑗) + (𝑖𝑌𝑗)))
5655oveq1d 7377 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = (((𝑖𝑋𝑗) + (𝑖𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))
571, 2, 23ringdir 19995 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → (((𝑖𝑋𝑗) + (𝑖𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) + ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
589, 16, 30, 22, 57syl13anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (((𝑖𝑋𝑗) + (𝑖𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) + ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5956, 58eqtrd 2777 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) + ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6059mpteq2dva 5210 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) + ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
61 eqidd 2738 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
62 eqidd 2738 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
638, 25, 32, 61, 62offval2 7642 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) + ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6460, 63eqtr4d 2780 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘))) = ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6564oveq2d 7378 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
66 mamudi.f . . . . . . 7 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
673adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
6842adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
69 mamudi.o . . . . . . . 8 (𝜑𝑂 ∈ Fin)
7069adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
7110adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
7217adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
73 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
74 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
7566, 1, 23, 67, 68, 8, 70, 71, 72, 73, 74mamufv 21752 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7626adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌 ∈ (𝐵m (𝑀 × 𝑁)))
7766, 1, 23, 67, 68, 8, 70, 76, 72, 73, 74mamufv 21752 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑌𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7875, 77oveq12d 7380 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑖(𝑋𝐹𝑍)𝑘) + (𝑖(𝑌𝐹𝑍)𝑘)) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
7935, 65, 783eqtr4d 2787 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = ((𝑖(𝑋𝐹𝑍)𝑘) + (𝑖(𝑌𝐹𝑍)𝑘)))
80 ringmnd 19981 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
813, 80syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
821, 2mndvcl 21756 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝑋 ∈ (𝐵m (𝑀 × 𝑁)) ∧ 𝑌 ∈ (𝐵m (𝑀 × 𝑁))) → (𝑋f + 𝑌) ∈ (𝐵m (𝑀 × 𝑁)))
8381, 10, 26, 82syl3anc 1372 . . . . . 6 (𝜑 → (𝑋f + 𝑌) ∈ (𝐵m (𝑀 × 𝑁)))
8483adantr 482 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋f + 𝑌) ∈ (𝐵m (𝑀 × 𝑁)))
8566, 1, 23, 67, 68, 8, 70, 84, 72, 73, 74mamufv 21752 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((𝑋f + 𝑌)𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
861, 3, 66, 42, 7, 69, 10, 17mamucl 21764 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
87 elmapi 8794 . . . . . . . 8 ((𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
88 ffn 6673 . . . . . . . 8 ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
8986, 87, 883syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9089adantr 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
911, 3, 66, 42, 7, 69, 26, 17mamucl 21764 . . . . . . . 8 (𝜑 → (𝑌𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
92 elmapi 8794 . . . . . . . 8 ((𝑌𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
93 ffn 6673 . . . . . . . 8 ((𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
9491, 92, 933syl 18 . . . . . . 7 (𝜑 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
9594adantr 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
96 xpfi 9268 . . . . . . . 8 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
9742, 69, 96syl2anc 585 . . . . . . 7 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
9897adantr 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
99 opelxpi 5675 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
10099adantl 483 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
101 fnfvof 7639 . . . . . 6 ((((𝑋𝐹𝑍) Fn (𝑀 × 𝑂) ∧ (𝑌𝐹𝑍) Fn (𝑀 × 𝑂)) ∧ ((𝑀 × 𝑂) ∈ Fin ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))) → (((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) + ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
10290, 95, 98, 100, 101syl22anc 838 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) + ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
103 df-ov 7365 . . . . 5 (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘) = (((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩)
104 df-ov 7365 . . . . . 6 (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)
105 df-ov 7365 . . . . . 6 (𝑖(𝑌𝐹𝑍)𝑘) = ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩)
106104, 105oveq12i 7374 . . . . 5 ((𝑖(𝑋𝐹𝑍)𝑘) + (𝑖(𝑌𝐹𝑍)𝑘)) = (((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) + ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩))
107102, 103, 1063eqtr4g 2802 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘) = ((𝑖(𝑋𝐹𝑍)𝑘) + (𝑖(𝑌𝐹𝑍)𝑘)))
10879, 85, 1073eqtr4d 2787 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((𝑋f + 𝑌)𝐹𝑍)𝑘) = (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘))
109108ralrimivva 3198 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖((𝑋f + 𝑌)𝐹𝑍)𝑘) = (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘))
1101, 3, 66, 42, 7, 69, 83, 17mamucl 21764 . . . 4 (𝜑 → ((𝑋f + 𝑌)𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
111 elmapi 8794 . . . 4 (((𝑋f + 𝑌)𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → ((𝑋f + 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
112 ffn 6673 . . . 4 (((𝑋f + 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → ((𝑋f + 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
113110, 111, 1123syl 18 . . 3 (𝜑 → ((𝑋f + 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
1141, 2mndvcl 21756 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) ∧ (𝑌𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂))) → ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
11581, 86, 91, 114syl3anc 1372 . . . 4 (𝜑 → ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
116 elmapi 8794 . . . 4 (((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
117 ffn 6673 . . . 4 (((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
118115, 116, 1173syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
119 eqfnov2 7491 . . 3 ((((𝑋f + 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂) ∧ ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) → (((𝑋f + 𝑌)𝐹𝑍) = ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((𝑋f + 𝑌)𝐹𝑍)𝑘) = (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘)))
120113, 118, 119syl2anc 585 . 2 (𝜑 → (((𝑋f + 𝑌)𝐹𝑍) = ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((𝑋f + 𝑌)𝐹𝑍)𝑘) = (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘)))
121109, 120mpbird 257 1 (𝜑 → ((𝑋f + 𝑌)𝐹𝑍) = ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3065  cop 4597  cotp 4599  cmpt 5193   × cxp 5636   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362  f cof 7620  m cmap 8772  Fincfn 8890  Basecbs 17090  +gcplusg 17140  .rcmulr 17141   Σg cgsu 17329  Mndcmnd 18563  CMndccmn 19569  Ringcrg 19971   maMul cmmul 21748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-ot 4600  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-seq 13914  df-hash 14238  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-0g 17330  df-gsum 17331  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-submnd 18609  df-grp 18758  df-minusg 18759  df-cntz 19104  df-cmn 19571  df-abl 19572  df-mgp 19904  df-ur 19921  df-ring 19973  df-mamu 21749
This theorem is referenced by:  matring  21808  mdetmul  21988
  Copyright terms: Public domain W3C validator