MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudi Structured version   Visualization version   GIF version

Theorem mamudi 22428
Description: Matrix multiplication distributes over addition on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamudi.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamudi.m (𝜑𝑀 ∈ Fin)
mamudi.n (𝜑𝑁 ∈ Fin)
mamudi.o (𝜑𝑂 ∈ Fin)
mamudi.p + = (+g𝑅)
mamudi.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamudi.y (𝜑𝑌 ∈ (𝐵m (𝑀 × 𝑁)))
mamudi.z (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
Assertion
Ref Expression
mamudi (𝜑 → ((𝑋f + 𝑌)𝐹𝑍) = ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)))

Proof of Theorem mamudi
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamudi.p . . . . . 6 + = (+g𝑅)
3 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ringcmn 20305 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ CMnd)
7 mamudi.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
87adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
93ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
10 mamudi.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
11 elmapi 8907 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1312ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
14 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
15 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
1613, 14, 15fovcdmd 7622 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
17 mamudi.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
18 elmapi 8907 . . . . . . . . . 10 (𝑍 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
1917, 18syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
2019ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
21 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
2220, 15, 21fovcdmd 7622 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
23 eqid 2740 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 23ringcl 20277 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
259, 16, 22, 24syl3anc 1371 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
26 mamudi.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵m (𝑀 × 𝑁)))
27 elmapi 8907 . . . . . . . . . 10 (𝑌 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑀 × 𝑁)⟶𝐵)
2928ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
3029, 14, 15fovcdmd 7622 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑌𝑗) ∈ 𝐵)
311, 23ringcl 20277 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
329, 30, 22, 31syl3anc 1371 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
33 eqid 2740 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))
34 eqid 2740 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))
351, 2, 6, 8, 25, 32, 33, 34gsummptfidmadd2 19968 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
3610ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
37 ffn 6747 . . . . . . . . . . . . 13 (𝑋:(𝑀 × 𝑁)⟶𝐵𝑋 Fn (𝑀 × 𝑁))
3836, 11, 373syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋 Fn (𝑀 × 𝑁))
3926ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 ∈ (𝐵m (𝑀 × 𝑁)))
40 ffn 6747 . . . . . . . . . . . . 13 (𝑌:(𝑀 × 𝑁)⟶𝐵𝑌 Fn (𝑀 × 𝑁))
4139, 27, 403syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 Fn (𝑀 × 𝑁))
42 mamudi.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Fin)
43 xpfi 9386 . . . . . . . . . . . . . 14 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
4442, 7, 43syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝑀 × 𝑁) ∈ Fin)
4544ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑀 × 𝑁) ∈ Fin)
46 opelxpi 5737 . . . . . . . . . . . . . 14 ((𝑖𝑀𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
4746adantlr 714 . . . . . . . . . . . . 13 (((𝑖𝑀𝑘𝑂) ∧ 𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
4847adantll 713 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
49 fnfvof 7731 . . . . . . . . . . . 12 (((𝑋 Fn (𝑀 × 𝑁) ∧ 𝑌 Fn (𝑀 × 𝑁)) ∧ ((𝑀 × 𝑁) ∈ Fin ∧ ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))) → ((𝑋f + 𝑌)‘⟨𝑖, 𝑗⟩) = ((𝑋‘⟨𝑖, 𝑗⟩) + (𝑌‘⟨𝑖, 𝑗⟩)))
5038, 41, 45, 48, 49syl22anc 838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑋f + 𝑌)‘⟨𝑖, 𝑗⟩) = ((𝑋‘⟨𝑖, 𝑗⟩) + (𝑌‘⟨𝑖, 𝑗⟩)))
51 df-ov 7451 . . . . . . . . . . 11 (𝑖(𝑋f + 𝑌)𝑗) = ((𝑋f + 𝑌)‘⟨𝑖, 𝑗⟩)
52 df-ov 7451 . . . . . . . . . . . 12 (𝑖𝑋𝑗) = (𝑋‘⟨𝑖, 𝑗⟩)
53 df-ov 7451 . . . . . . . . . . . 12 (𝑖𝑌𝑗) = (𝑌‘⟨𝑖, 𝑗⟩)
5452, 53oveq12i 7460 . . . . . . . . . . 11 ((𝑖𝑋𝑗) + (𝑖𝑌𝑗)) = ((𝑋‘⟨𝑖, 𝑗⟩) + (𝑌‘⟨𝑖, 𝑗⟩))
5550, 51, 543eqtr4g 2805 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖(𝑋f + 𝑌)𝑗) = ((𝑖𝑋𝑗) + (𝑖𝑌𝑗)))
5655oveq1d 7463 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = (((𝑖𝑋𝑗) + (𝑖𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))
571, 2, 23ringdir 20288 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → (((𝑖𝑋𝑗) + (𝑖𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) + ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
589, 16, 30, 22, 57syl13anc 1372 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (((𝑖𝑋𝑗) + (𝑖𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) + ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5956, 58eqtrd 2780 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) + ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6059mpteq2dva 5266 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) + ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
61 eqidd 2741 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
62 eqidd 2741 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
638, 25, 32, 61, 62offval2 7734 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) + ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6460, 63eqtr4d 2783 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘))) = ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6564oveq2d 7464 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
66 mamudi.f . . . . . . 7 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
673adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
6842adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
69 mamudi.o . . . . . . . 8 (𝜑𝑂 ∈ Fin)
7069adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
7110adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
7217adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
73 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
74 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
7566, 1, 23, 67, 68, 8, 70, 71, 72, 73, 74mamufv 22419 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7626adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌 ∈ (𝐵m (𝑀 × 𝑁)))
7766, 1, 23, 67, 68, 8, 70, 76, 72, 73, 74mamufv 22419 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑌𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7875, 77oveq12d 7466 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑖(𝑋𝐹𝑍)𝑘) + (𝑖(𝑌𝐹𝑍)𝑘)) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
7935, 65, 783eqtr4d 2790 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = ((𝑖(𝑋𝐹𝑍)𝑘) + (𝑖(𝑌𝐹𝑍)𝑘)))
80 ringmnd 20270 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
813, 80syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
821, 2mndvcl 18832 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝑋 ∈ (𝐵m (𝑀 × 𝑁)) ∧ 𝑌 ∈ (𝐵m (𝑀 × 𝑁))) → (𝑋f + 𝑌) ∈ (𝐵m (𝑀 × 𝑁)))
8381, 10, 26, 82syl3anc 1371 . . . . . 6 (𝜑 → (𝑋f + 𝑌) ∈ (𝐵m (𝑀 × 𝑁)))
8483adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋f + 𝑌) ∈ (𝐵m (𝑀 × 𝑁)))
8566, 1, 23, 67, 68, 8, 70, 84, 72, 73, 74mamufv 22419 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((𝑋f + 𝑌)𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋f + 𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
861, 3, 66, 42, 7, 69, 10, 17mamucl 22426 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
87 elmapi 8907 . . . . . . . 8 ((𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
88 ffn 6747 . . . . . . . 8 ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
8986, 87, 883syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9089adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
911, 3, 66, 42, 7, 69, 26, 17mamucl 22426 . . . . . . . 8 (𝜑 → (𝑌𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
92 elmapi 8907 . . . . . . . 8 ((𝑌𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
93 ffn 6747 . . . . . . . 8 ((𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
9491, 92, 933syl 18 . . . . . . 7 (𝜑 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
9594adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
96 xpfi 9386 . . . . . . . 8 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
9742, 69, 96syl2anc 583 . . . . . . 7 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
9897adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
99 opelxpi 5737 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
10099adantl 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
101 fnfvof 7731 . . . . . 6 ((((𝑋𝐹𝑍) Fn (𝑀 × 𝑂) ∧ (𝑌𝐹𝑍) Fn (𝑀 × 𝑂)) ∧ ((𝑀 × 𝑂) ∈ Fin ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))) → (((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) + ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
10290, 95, 98, 100, 101syl22anc 838 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) + ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
103 df-ov 7451 . . . . 5 (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘) = (((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩)
104 df-ov 7451 . . . . . 6 (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)
105 df-ov 7451 . . . . . 6 (𝑖(𝑌𝐹𝑍)𝑘) = ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩)
106104, 105oveq12i 7460 . . . . 5 ((𝑖(𝑋𝐹𝑍)𝑘) + (𝑖(𝑌𝐹𝑍)𝑘)) = (((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩) + ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩))
107102, 103, 1063eqtr4g 2805 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘) = ((𝑖(𝑋𝐹𝑍)𝑘) + (𝑖(𝑌𝐹𝑍)𝑘)))
10879, 85, 1073eqtr4d 2790 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((𝑋f + 𝑌)𝐹𝑍)𝑘) = (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘))
109108ralrimivva 3208 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖((𝑋f + 𝑌)𝐹𝑍)𝑘) = (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘))
1101, 3, 66, 42, 7, 69, 83, 17mamucl 22426 . . . 4 (𝜑 → ((𝑋f + 𝑌)𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
111 elmapi 8907 . . . 4 (((𝑋f + 𝑌)𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → ((𝑋f + 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
112 ffn 6747 . . . 4 (((𝑋f + 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → ((𝑋f + 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
113110, 111, 1123syl 18 . . 3 (𝜑 → ((𝑋f + 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
1141, 2mndvcl 18832 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) ∧ (𝑌𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂))) → ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
11581, 86, 91, 114syl3anc 1371 . . . 4 (𝜑 → ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
116 elmapi 8907 . . . 4 (((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
117 ffn 6747 . . . 4 (((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
118115, 116, 1173syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
119 eqfnov2 7580 . . 3 ((((𝑋f + 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂) ∧ ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) → (((𝑋f + 𝑌)𝐹𝑍) = ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((𝑋f + 𝑌)𝐹𝑍)𝑘) = (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘)))
120113, 118, 119syl2anc 583 . 2 (𝜑 → (((𝑋f + 𝑌)𝐹𝑍) = ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((𝑋f + 𝑌)𝐹𝑍)𝑘) = (𝑖((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍))𝑘)))
121109, 120mpbird 257 1 (𝜑 → ((𝑋f + 𝑌)𝐹𝑍) = ((𝑋𝐹𝑍) ∘f + (𝑌𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cop 4654  cotp 4656  cmpt 5249   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Fincfn 9003  Basecbs 17258  +gcplusg 17311  .rcmulr 17312   Σg cgsu 17500  Mndcmnd 18772  CMndccmn 19822  Ringcrg 20260   maMul cmmul 22415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-ur 20209  df-ring 20262  df-mamu 22416
This theorem is referenced by:  matring  22470  mdetmul  22650
  Copyright terms: Public domain W3C validator