Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubrn Structured version   Visualization version   GIF version

Theorem msubrn 33540
Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff.v 𝑉 = (mVR‘𝑇)
msubff.r 𝑅 = (mREx‘𝑇)
msubff.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
msubrn ran 𝑆 = (𝑆 “ (𝑅m 𝑉))

Proof of Theorem msubrn
Dummy variables 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubff.v . . . . . 6 𝑉 = (mVR‘𝑇)
2 msubff.r . . . . . 6 𝑅 = (mREx‘𝑇)
3 msubff.s . . . . . 6 𝑆 = (mSubst‘𝑇)
4 eqid 2736 . . . . . 6 (mEx‘𝑇) = (mEx‘𝑇)
5 eqid 2736 . . . . . 6 (mRSubst‘𝑇) = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubffval 33534 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)))
76rneqd 5859 . . . 4 (𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)))
81, 2, 5mrsubff 33523 . . . . . . . . . 10 (𝑇 ∈ V → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
98adantr 482 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
109ffund 6634 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → Fun (mRSubst‘𝑇))
118ffnd 6631 . . . . . . . . . 10 (𝑇 ∈ V → (mRSubst‘𝑇) Fn (𝑅pm 𝑉))
12 fnfvelrn 6990 . . . . . . . . . 10 (((mRSubst‘𝑇) Fn (𝑅pm 𝑉) ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ran (mRSubst‘𝑇))
1311, 12sylan 581 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ran (mRSubst‘𝑇))
141, 2, 5mrsubrn 33524 . . . . . . . . 9 ran (mRSubst‘𝑇) = ((mRSubst‘𝑇) “ (𝑅m 𝑉))
1513, 14eleqtrdi 2847 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ((mRSubst‘𝑇) “ (𝑅m 𝑉)))
16 fvelima 6867 . . . . . . . 8 ((Fun (mRSubst‘𝑇) ∧ ((mRSubst‘𝑇)‘𝑓) ∈ ((mRSubst‘𝑇) “ (𝑅m 𝑉))) → ∃𝑔 ∈ (𝑅m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓))
1710, 15, 16syl2anc 585 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ∃𝑔 ∈ (𝑅m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓))
18 elmapi 8668 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑅m 𝑉) → 𝑔:𝑉𝑅)
1918adantl 483 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → 𝑔:𝑉𝑅)
20 ssid 3948 . . . . . . . . . . . 12 𝑉𝑉
211, 2, 3, 4, 5msubfval 33535 . . . . . . . . . . . 12 ((𝑔:𝑉𝑅𝑉𝑉) → (𝑆𝑔) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩))
2219, 20, 21sylancl 587 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑆𝑔) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩))
23 fvex 6817 . . . . . . . . . . . . . . . 16 (mEx‘𝑇) ∈ V
2423mptex 7131 . . . . . . . . . . . . . . 15 (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ V
25 eqid 2736 . . . . . . . . . . . . . . 15 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩))
2624, 25fnmpti 6606 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) Fn (𝑅pm 𝑉)
276fneq1d 6557 . . . . . . . . . . . . . 14 (𝑇 ∈ V → (𝑆 Fn (𝑅pm 𝑉) ↔ (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) Fn (𝑅pm 𝑉)))
2826, 27mpbiri 258 . . . . . . . . . . . . 13 (𝑇 ∈ V → 𝑆 Fn (𝑅pm 𝑉))
2928adantr 482 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → 𝑆 Fn (𝑅pm 𝑉))
30 mapsspm 8695 . . . . . . . . . . . . 13 (𝑅m 𝑉) ⊆ (𝑅pm 𝑉)
3130a1i 11 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑅m 𝑉) ⊆ (𝑅pm 𝑉))
32 simpr 486 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → 𝑔 ∈ (𝑅m 𝑉))
33 fnfvima 7141 . . . . . . . . . . . 12 ((𝑆 Fn (𝑅pm 𝑉) ∧ (𝑅m 𝑉) ⊆ (𝑅pm 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑆𝑔) ∈ (𝑆 “ (𝑅m 𝑉)))
3429, 31, 32, 33syl3anc 1371 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑆𝑔) ∈ (𝑆 “ (𝑅m 𝑉)))
3522, 34eqeltrrd 2838 . . . . . . . . . 10 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)))
3635adantlr 713 . . . . . . . . 9 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)))
37 fveq1 6803 . . . . . . . . . . . 12 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒)) = (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)))
3837opeq2d 4816 . . . . . . . . . . 11 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩ = ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)
3938mpteq2dv 5183 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩))
4039eleq1d 2821 . . . . . . . . 9 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → ((𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)) ↔ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉))))
4136, 40syl5ibcom 245 . . . . . . . 8 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉))))
4241rexlimdva 3149 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (∃𝑔 ∈ (𝑅m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉))))
4317, 42mpd 15 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)))
4443fmpttd 7021 . . . . 5 (𝑇 ∈ V → (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)):(𝑅pm 𝑉)⟶(𝑆 “ (𝑅m 𝑉)))
4544frnd 6638 . . . 4 (𝑇 ∈ V → ran (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) ⊆ (𝑆 “ (𝑅m 𝑉)))
467, 45eqsstrd 3964 . . 3 (𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
473rnfvprc 6798 . . . 4 𝑇 ∈ V → ran 𝑆 = ∅)
48 0ss 4336 . . . 4 ∅ ⊆ (𝑆 “ (𝑅m 𝑉))
4947, 48eqsstrdi 3980 . . 3 𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
5046, 49pm2.61i 182 . 2 ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉))
51 imassrn 5990 . 2 (𝑆 “ (𝑅m 𝑉)) ⊆ ran 𝑆
5250, 51eqssi 3942 1 ran 𝑆 = (𝑆 “ (𝑅m 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 397   = wceq 1539  wcel 2104  wrex 3071  Vcvv 3437  wss 3892  c0 4262  cop 4571  cmpt 5164  ran crn 5601  cima 5603  Fun wfun 6452   Fn wfn 6453  wf 6454  cfv 6458  (class class class)co 7307  1st c1st 7861  2nd c2nd 7862  m cmap 8646  pm cpm 8647  mVRcmvar 33472  mRExcmrex 33477  mExcmex 33478  mRSubstcmrsub 33481  mSubstcmsub 33482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-card 9745  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-nn 12024  df-2 12086  df-n0 12284  df-z 12370  df-uz 12633  df-fz 13290  df-fzo 13433  df-seq 13772  df-hash 14095  df-word 14267  df-concat 14323  df-s1 14350  df-struct 16897  df-sets 16914  df-slot 16932  df-ndx 16944  df-base 16962  df-ress 16991  df-plusg 17024  df-0g 17201  df-gsum 17202  df-mgm 18375  df-sgrp 18424  df-mnd 18435  df-submnd 18480  df-frmd 18537  df-mrex 33497  df-mrsub 33501  df-msub 33502
This theorem is referenced by:  msubff1o  33568
  Copyright terms: Public domain W3C validator