| Step | Hyp | Ref
| Expression |
| 1 | | msubff.v |
. . . . . 6
⊢ 𝑉 = (mVR‘𝑇) |
| 2 | | msubff.r |
. . . . . 6
⊢ 𝑅 = (mREx‘𝑇) |
| 3 | | msubff.s |
. . . . . 6
⊢ 𝑆 = (mSubst‘𝑇) |
| 4 | | eqid 2737 |
. . . . . 6
⊢
(mEx‘𝑇) =
(mEx‘𝑇) |
| 5 | | eqid 2737 |
. . . . . 6
⊢
(mRSubst‘𝑇) =
(mRSubst‘𝑇) |
| 6 | 1, 2, 3, 4, 5 | msubffval 35528 |
. . . . 5
⊢ (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉))) |
| 7 | 6 | rneqd 5949 |
. . . 4
⊢ (𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉))) |
| 8 | 1, 2, 5 | mrsubff 35517 |
. . . . . . . . . 10
⊢ (𝑇 ∈ V →
(mRSubst‘𝑇):(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
| 9 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → (mRSubst‘𝑇):(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
| 10 | 9 | ffund 6740 |
. . . . . . . 8
⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → Fun (mRSubst‘𝑇)) |
| 11 | 8 | ffnd 6737 |
. . . . . . . . . 10
⊢ (𝑇 ∈ V →
(mRSubst‘𝑇) Fn (𝑅 ↑pm 𝑉)) |
| 12 | | fnfvelrn 7100 |
. . . . . . . . . 10
⊢
(((mRSubst‘𝑇)
Fn (𝑅 ↑pm
𝑉) ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ran (mRSubst‘𝑇)) |
| 13 | 11, 12 | sylan 580 |
. . . . . . . . 9
⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ran (mRSubst‘𝑇)) |
| 14 | 1, 2, 5 | mrsubrn 35518 |
. . . . . . . . 9
⊢ ran
(mRSubst‘𝑇) =
((mRSubst‘𝑇) “
(𝑅 ↑m 𝑉)) |
| 15 | 13, 14 | eleqtrdi 2851 |
. . . . . . . 8
⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ((mRSubst‘𝑇) “ (𝑅 ↑m 𝑉))) |
| 16 | | fvelima 6974 |
. . . . . . . 8
⊢ ((Fun
(mRSubst‘𝑇) ∧
((mRSubst‘𝑇)‘𝑓) ∈ ((mRSubst‘𝑇) “ (𝑅 ↑m 𝑉))) → ∃𝑔 ∈ (𝑅 ↑m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓)) |
| 17 | 10, 15, 16 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → ∃𝑔 ∈ (𝑅 ↑m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓)) |
| 18 | | elmapi 8889 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ (𝑅 ↑m 𝑉) → 𝑔:𝑉⟶𝑅) |
| 19 | 18 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → 𝑔:𝑉⟶𝑅) |
| 20 | | ssid 4006 |
. . . . . . . . . . . 12
⊢ 𝑉 ⊆ 𝑉 |
| 21 | 1, 2, 3, 4, 5 | msubfval 35529 |
. . . . . . . . . . . 12
⊢ ((𝑔:𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉) → (𝑆‘𝑔) = (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘𝑒))〉)) |
| 22 | 19, 20, 21 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → (𝑆‘𝑔) = (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘𝑒))〉)) |
| 23 | | fvex 6919 |
. . . . . . . . . . . . . . . 16
⊢
(mEx‘𝑇) ∈
V |
| 24 | 23 | mptex 7243 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st
‘𝑒),
(((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) ∈
V |
| 25 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)) = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)) |
| 26 | 24, 25 | fnmpti 6711 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)) Fn (𝑅 ↑pm 𝑉) |
| 27 | 6 | fneq1d 6661 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈ V → (𝑆 Fn (𝑅 ↑pm 𝑉) ↔ (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)) Fn (𝑅 ↑pm 𝑉))) |
| 28 | 26, 27 | mpbiri 258 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ V → 𝑆 Fn (𝑅 ↑pm 𝑉)) |
| 29 | 28 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → 𝑆 Fn (𝑅 ↑pm 𝑉)) |
| 30 | | mapsspm 8916 |
. . . . . . . . . . . . 13
⊢ (𝑅 ↑m 𝑉) ⊆ (𝑅 ↑pm 𝑉) |
| 31 | 30 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → (𝑅 ↑m 𝑉) ⊆ (𝑅 ↑pm 𝑉)) |
| 32 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → 𝑔 ∈ (𝑅 ↑m 𝑉)) |
| 33 | | fnfvima 7253 |
. . . . . . . . . . . 12
⊢ ((𝑆 Fn (𝑅 ↑pm 𝑉) ∧ (𝑅 ↑m 𝑉) ⊆ (𝑅 ↑pm 𝑉) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → (𝑆‘𝑔) ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
| 34 | 29, 31, 32, 33 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → (𝑆‘𝑔) ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
| 35 | 22, 34 | eqeltrrd 2842 |
. . . . . . . . . 10
⊢ ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘𝑒))〉) ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
| 36 | 35 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘𝑒))〉) ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
| 37 | | fveq1 6905 |
. . . . . . . . . . . 12
⊢
(((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘𝑒)) = (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))) |
| 38 | 37 | opeq2d 4880 |
. . . . . . . . . . 11
⊢
(((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘𝑒))〉 = 〈(1st
‘𝑒),
(((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) |
| 39 | 38 | mpteq2dv 5244 |
. . . . . . . . . 10
⊢
(((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘𝑒))〉) = (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)) |
| 40 | 39 | eleq1d 2826 |
. . . . . . . . 9
⊢
(((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → ((𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd ‘𝑒))〉) ∈ (𝑆 “ (𝑅 ↑m 𝑉)) ↔ (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) ∈ (𝑆 “ (𝑅 ↑m 𝑉)))) |
| 41 | 36, 40 | syl5ibcom 245 |
. . . . . . . 8
⊢ (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑔 ∈ (𝑅 ↑m 𝑉)) → (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) ∈ (𝑆 “ (𝑅 ↑m 𝑉)))) |
| 42 | 41 | rexlimdva 3155 |
. . . . . . 7
⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → (∃𝑔 ∈ (𝑅 ↑m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) ∈ (𝑆 “ (𝑅 ↑m 𝑉)))) |
| 43 | 17, 42 | mpd 15 |
. . . . . 6
⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
| 44 | 43 | fmpttd 7135 |
. . . . 5
⊢ (𝑇 ∈ V → (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)):(𝑅 ↑pm 𝑉)⟶(𝑆 “ (𝑅 ↑m 𝑉))) |
| 45 | 44 | frnd 6744 |
. . . 4
⊢ (𝑇 ∈ V → ran (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)) ⊆ (𝑆 “ (𝑅 ↑m 𝑉))) |
| 46 | 7, 45 | eqsstrd 4018 |
. . 3
⊢ (𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅 ↑m 𝑉))) |
| 47 | 3 | rnfvprc 6900 |
. . . 4
⊢ (¬
𝑇 ∈ V → ran 𝑆 = ∅) |
| 48 | | 0ss 4400 |
. . . 4
⊢ ∅
⊆ (𝑆 “ (𝑅 ↑m 𝑉)) |
| 49 | 47, 48 | eqsstrdi 4028 |
. . 3
⊢ (¬
𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅 ↑m 𝑉))) |
| 50 | 46, 49 | pm2.61i 182 |
. 2
⊢ ran 𝑆 ⊆ (𝑆 “ (𝑅 ↑m 𝑉)) |
| 51 | | imassrn 6089 |
. 2
⊢ (𝑆 “ (𝑅 ↑m 𝑉)) ⊆ ran 𝑆 |
| 52 | 50, 51 | eqssi 4000 |
1
⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) |