Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubrn Structured version   Visualization version   GIF version

Theorem msubrn 35489
Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff.v 𝑉 = (mVR‘𝑇)
msubff.r 𝑅 = (mREx‘𝑇)
msubff.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
msubrn ran 𝑆 = (𝑆 “ (𝑅m 𝑉))

Proof of Theorem msubrn
Dummy variables 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubff.v . . . . . 6 𝑉 = (mVR‘𝑇)
2 msubff.r . . . . . 6 𝑅 = (mREx‘𝑇)
3 msubff.s . . . . . 6 𝑆 = (mSubst‘𝑇)
4 eqid 2729 . . . . . 6 (mEx‘𝑇) = (mEx‘𝑇)
5 eqid 2729 . . . . . 6 (mRSubst‘𝑇) = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubffval 35483 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)))
76rneqd 5891 . . . 4 (𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)))
81, 2, 5mrsubff 35472 . . . . . . . . . 10 (𝑇 ∈ V → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
98adantr 480 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
109ffund 6674 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → Fun (mRSubst‘𝑇))
118ffnd 6671 . . . . . . . . . 10 (𝑇 ∈ V → (mRSubst‘𝑇) Fn (𝑅pm 𝑉))
12 fnfvelrn 7034 . . . . . . . . . 10 (((mRSubst‘𝑇) Fn (𝑅pm 𝑉) ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ran (mRSubst‘𝑇))
1311, 12sylan 580 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ran (mRSubst‘𝑇))
141, 2, 5mrsubrn 35473 . . . . . . . . 9 ran (mRSubst‘𝑇) = ((mRSubst‘𝑇) “ (𝑅m 𝑉))
1513, 14eleqtrdi 2838 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ((mRSubst‘𝑇) “ (𝑅m 𝑉)))
16 fvelima 6908 . . . . . . . 8 ((Fun (mRSubst‘𝑇) ∧ ((mRSubst‘𝑇)‘𝑓) ∈ ((mRSubst‘𝑇) “ (𝑅m 𝑉))) → ∃𝑔 ∈ (𝑅m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓))
1710, 15, 16syl2anc 584 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ∃𝑔 ∈ (𝑅m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓))
18 elmapi 8799 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑅m 𝑉) → 𝑔:𝑉𝑅)
1918adantl 481 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → 𝑔:𝑉𝑅)
20 ssid 3966 . . . . . . . . . . . 12 𝑉𝑉
211, 2, 3, 4, 5msubfval 35484 . . . . . . . . . . . 12 ((𝑔:𝑉𝑅𝑉𝑉) → (𝑆𝑔) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩))
2219, 20, 21sylancl 586 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑆𝑔) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩))
23 fvex 6853 . . . . . . . . . . . . . . . 16 (mEx‘𝑇) ∈ V
2423mptex 7179 . . . . . . . . . . . . . . 15 (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ V
25 eqid 2729 . . . . . . . . . . . . . . 15 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩))
2624, 25fnmpti 6643 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) Fn (𝑅pm 𝑉)
276fneq1d 6593 . . . . . . . . . . . . . 14 (𝑇 ∈ V → (𝑆 Fn (𝑅pm 𝑉) ↔ (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) Fn (𝑅pm 𝑉)))
2826, 27mpbiri 258 . . . . . . . . . . . . 13 (𝑇 ∈ V → 𝑆 Fn (𝑅pm 𝑉))
2928adantr 480 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → 𝑆 Fn (𝑅pm 𝑉))
30 mapsspm 8826 . . . . . . . . . . . . 13 (𝑅m 𝑉) ⊆ (𝑅pm 𝑉)
3130a1i 11 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑅m 𝑉) ⊆ (𝑅pm 𝑉))
32 simpr 484 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → 𝑔 ∈ (𝑅m 𝑉))
33 fnfvima 7189 . . . . . . . . . . . 12 ((𝑆 Fn (𝑅pm 𝑉) ∧ (𝑅m 𝑉) ⊆ (𝑅pm 𝑉) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑆𝑔) ∈ (𝑆 “ (𝑅m 𝑉)))
3429, 31, 32, 33syl3anc 1373 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑆𝑔) ∈ (𝑆 “ (𝑅m 𝑉)))
3522, 34eqeltrrd 2829 . . . . . . . . . 10 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)))
3635adantlr 715 . . . . . . . . 9 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)))
37 fveq1 6839 . . . . . . . . . . . 12 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒)) = (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)))
3837opeq2d 4840 . . . . . . . . . . 11 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩ = ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)
3938mpteq2dv 5196 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩))
4039eleq1d 2813 . . . . . . . . 9 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → ((𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)) ↔ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉))))
4136, 40syl5ibcom 245 . . . . . . . 8 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑔 ∈ (𝑅m 𝑉)) → (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉))))
4241rexlimdva 3134 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (∃𝑔 ∈ (𝑅m 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉))))
4317, 42mpd 15 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅m 𝑉)))
4443fmpttd 7069 . . . . 5 (𝑇 ∈ V → (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)):(𝑅pm 𝑉)⟶(𝑆 “ (𝑅m 𝑉)))
4544frnd 6678 . . . 4 (𝑇 ∈ V → ran (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) ⊆ (𝑆 “ (𝑅m 𝑉)))
467, 45eqsstrd 3978 . . 3 (𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
473rnfvprc 6834 . . . 4 𝑇 ∈ V → ran 𝑆 = ∅)
48 0ss 4359 . . . 4 ∅ ⊆ (𝑆 “ (𝑅m 𝑉))
4947, 48eqsstrdi 3988 . . 3 𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉)))
5046, 49pm2.61i 182 . 2 ran 𝑆 ⊆ (𝑆 “ (𝑅m 𝑉))
51 imassrn 6031 . 2 (𝑆 “ (𝑅m 𝑉)) ⊆ ran 𝑆
5250, 51eqssi 3960 1 ran 𝑆 = (𝑆 “ (𝑅m 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3444  wss 3911  c0 4292  cop 4591  cmpt 5183  ran crn 5632  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  m cmap 8776  pm cpm 8777  mVRcmvar 35421  mRExcmrex 35426  mExcmex 35427  mRSubstcmrsub 35430  mSubstcmsub 35431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-frmd 18752  df-mrex 35446  df-mrsub 35450  df-msub 35451
This theorem is referenced by:  msubff1o  35517
  Copyright terms: Public domain W3C validator