Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubrn Structured version   Visualization version   GIF version

Theorem msubrn 31972
Description: Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff.v 𝑉 = (mVR‘𝑇)
msubff.r 𝑅 = (mREx‘𝑇)
msubff.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
msubrn ran 𝑆 = (𝑆 “ (𝑅𝑚 𝑉))

Proof of Theorem msubrn
Dummy variables 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msubff.v . . . . . 6 𝑉 = (mVR‘𝑇)
2 msubff.r . . . . . 6 𝑅 = (mREx‘𝑇)
3 msubff.s . . . . . 6 𝑆 = (mSubst‘𝑇)
4 eqid 2825 . . . . . 6 (mEx‘𝑇) = (mEx‘𝑇)
5 eqid 2825 . . . . . 6 (mRSubst‘𝑇) = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubffval 31966 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)))
76rneqd 5585 . . . 4 (𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)))
81, 2, 5mrsubff 31955 . . . . . . . . . 10 (𝑇 ∈ V → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
98adantr 474 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
109ffund 6282 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → Fun (mRSubst‘𝑇))
118ffnd 6279 . . . . . . . . . 10 (𝑇 ∈ V → (mRSubst‘𝑇) Fn (𝑅pm 𝑉))
12 fnfvelrn 6605 . . . . . . . . . 10 (((mRSubst‘𝑇) Fn (𝑅pm 𝑉) ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ran (mRSubst‘𝑇))
1311, 12sylan 577 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ran (mRSubst‘𝑇))
141, 2, 5mrsubrn 31956 . . . . . . . . 9 ran (mRSubst‘𝑇) = ((mRSubst‘𝑇) “ (𝑅𝑚 𝑉))
1513, 14syl6eleq 2916 . . . . . . . 8 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ ((mRSubst‘𝑇) “ (𝑅𝑚 𝑉)))
16 fvelima 6495 . . . . . . . 8 ((Fun (mRSubst‘𝑇) ∧ ((mRSubst‘𝑇)‘𝑓) ∈ ((mRSubst‘𝑇) “ (𝑅𝑚 𝑉))) → ∃𝑔 ∈ (𝑅𝑚 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓))
1710, 15, 16syl2anc 581 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → ∃𝑔 ∈ (𝑅𝑚 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓))
18 elmapi 8144 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑅𝑚 𝑉) → 𝑔:𝑉𝑅)
1918adantl 475 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → 𝑔:𝑉𝑅)
20 ssid 3848 . . . . . . . . . . . 12 𝑉𝑉
211, 2, 3, 4, 5msubfval 31967 . . . . . . . . . . . 12 ((𝑔:𝑉𝑅𝑉𝑉) → (𝑆𝑔) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩))
2219, 20, 21sylancl 582 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (𝑆𝑔) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩))
23 fvex 6446 . . . . . . . . . . . . . . . 16 (mEx‘𝑇) ∈ V
2423mptex 6742 . . . . . . . . . . . . . . 15 (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ V
25 eqid 2825 . . . . . . . . . . . . . . 15 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩))
2624, 25fnmpti 6255 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) Fn (𝑅pm 𝑉)
276fneq1d 6214 . . . . . . . . . . . . . 14 (𝑇 ∈ V → (𝑆 Fn (𝑅pm 𝑉) ↔ (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) Fn (𝑅pm 𝑉)))
2826, 27mpbiri 250 . . . . . . . . . . . . 13 (𝑇 ∈ V → 𝑆 Fn (𝑅pm 𝑉))
2928adantr 474 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → 𝑆 Fn (𝑅pm 𝑉))
30 mapsspm 8156 . . . . . . . . . . . . 13 (𝑅𝑚 𝑉) ⊆ (𝑅pm 𝑉)
3130a1i 11 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (𝑅𝑚 𝑉) ⊆ (𝑅pm 𝑉))
32 simpr 479 . . . . . . . . . . . 12 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → 𝑔 ∈ (𝑅𝑚 𝑉))
33 fnfvima 6752 . . . . . . . . . . . 12 ((𝑆 Fn (𝑅pm 𝑉) ∧ (𝑅𝑚 𝑉) ⊆ (𝑅pm 𝑉) ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (𝑆𝑔) ∈ (𝑆 “ (𝑅𝑚 𝑉)))
3429, 31, 32, 33syl3anc 1496 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (𝑆𝑔) ∈ (𝑆 “ (𝑅𝑚 𝑉)))
3522, 34eqeltrrd 2907 . . . . . . . . . 10 ((𝑇 ∈ V ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅𝑚 𝑉)))
3635adantlr 708 . . . . . . . . 9 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅𝑚 𝑉)))
37 fveq1 6432 . . . . . . . . . . . 12 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒)) = (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)))
3837opeq2d 4630 . . . . . . . . . . 11 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩ = ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)
3938mpteq2dv 4968 . . . . . . . . . 10 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) = (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩))
4039eleq1d 2891 . . . . . . . . 9 (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → ((𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑔)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅𝑚 𝑉)) ↔ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅𝑚 𝑉))))
4136, 40syl5ibcom 237 . . . . . . . 8 (((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑔 ∈ (𝑅𝑚 𝑉)) → (((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅𝑚 𝑉))))
4241rexlimdva 3240 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (∃𝑔 ∈ (𝑅𝑚 𝑉)((mRSubst‘𝑇)‘𝑔) = ((mRSubst‘𝑇)‘𝑓) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅𝑚 𝑉))))
4317, 42mpd 15 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ (𝑅pm 𝑉)) → (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝑆 “ (𝑅𝑚 𝑉)))
4443fmpttd 6634 . . . . 5 (𝑇 ∈ V → (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)):(𝑅pm 𝑉)⟶(𝑆 “ (𝑅𝑚 𝑉)))
4544frnd 6285 . . . 4 (𝑇 ∈ V → ran (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒 ∈ (mEx‘𝑇) ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)) ⊆ (𝑆 “ (𝑅𝑚 𝑉)))
467, 45eqsstrd 3864 . . 3 (𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅𝑚 𝑉)))
473rnfvprc 6427 . . . 4 𝑇 ∈ V → ran 𝑆 = ∅)
48 0ss 4197 . . . 4 ∅ ⊆ (𝑆 “ (𝑅𝑚 𝑉))
4947, 48syl6eqss 3880 . . 3 𝑇 ∈ V → ran 𝑆 ⊆ (𝑆 “ (𝑅𝑚 𝑉)))
5046, 49pm2.61i 177 . 2 ran 𝑆 ⊆ (𝑆 “ (𝑅𝑚 𝑉))
51 imassrn 5718 . 2 (𝑆 “ (𝑅𝑚 𝑉)) ⊆ ran 𝑆
5250, 51eqssi 3843 1 ran 𝑆 = (𝑆 “ (𝑅𝑚 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 386   = wceq 1658  wcel 2166  wrex 3118  Vcvv 3414  wss 3798  c0 4144  cop 4403  cmpt 4952  ran crn 5343  cima 5345  Fun wfun 6117   Fn wfn 6118  wf 6119  cfv 6123  (class class class)co 6905  1st c1st 7426  2nd c2nd 7427  𝑚 cmap 8122  pm cpm 8123  mVRcmvar 31904  mRExcmrex 31909  mExcmex 31910  mRSubstcmrsub 31913  mSubstcmsub 31914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-seq 13096  df-hash 13411  df-word 13575  df-concat 13631  df-s1 13656  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-0g 16455  df-gsum 16456  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-frmd 17740  df-mrex 31929  df-mrsub 31933  df-msub 31934
This theorem is referenced by:  msubff1o  32000
  Copyright terms: Public domain W3C validator