Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubco Structured version   Visualization version   GIF version

Theorem mrsubco 34179
Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mrsubco.s 𝑆 = (mRSubstβ€˜π‘‡)
Assertion
Ref Expression
mrsubco ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ (𝐹 ∘ 𝐺) ∈ ran 𝑆)

Proof of Theorem mrsubco
Dummy variables 𝑐 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubco.s . . . . 5 𝑆 = (mRSubstβ€˜π‘‡)
2 eqid 2733 . . . . 5 (mRExβ€˜π‘‡) = (mRExβ€˜π‘‡)
31, 2mrsubf 34175 . . . 4 (𝐹 ∈ ran 𝑆 β†’ 𝐹:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡))
43adantr 482 . . 3 ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ 𝐹:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡))
51, 2mrsubf 34175 . . . 4 (𝐺 ∈ ran 𝑆 β†’ 𝐺:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡))
65adantl 483 . . 3 ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ 𝐺:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡))
7 fco 6696 . . 3 ((𝐹:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡) ∧ 𝐺:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡)) β†’ (𝐹 ∘ 𝐺):(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡))
84, 6, 7syl2anc 585 . 2 ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ (𝐹 ∘ 𝐺):(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡))
96adantr 482 . . . . 5 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ 𝐺:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡))
10 eldifi 4090 . . . . . . . . 9 (𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡)) β†’ 𝑐 ∈ (mCNβ€˜π‘‡))
11 elun1 4140 . . . . . . . . 9 (𝑐 ∈ (mCNβ€˜π‘‡) β†’ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
1210, 11syl 17 . . . . . . . 8 (𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡)) β†’ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
1312adantl 483 . . . . . . 7 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
1413s1cld 14500 . . . . . 6 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ βŸ¨β€œπ‘β€βŸ© ∈ Word ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
15 n0i 4297 . . . . . . . . . 10 (𝐹 ∈ ran 𝑆 β†’ Β¬ ran 𝑆 = βˆ…)
161rnfvprc 6840 . . . . . . . . . 10 (Β¬ 𝑇 ∈ V β†’ ran 𝑆 = βˆ…)
1715, 16nsyl2 141 . . . . . . . . 9 (𝐹 ∈ ran 𝑆 β†’ 𝑇 ∈ V)
1817adantr 482 . . . . . . . 8 ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ 𝑇 ∈ V)
1918adantr 482 . . . . . . 7 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ 𝑇 ∈ V)
20 eqid 2733 . . . . . . . 8 (mCNβ€˜π‘‡) = (mCNβ€˜π‘‡)
21 eqid 2733 . . . . . . . 8 (mVRβ€˜π‘‡) = (mVRβ€˜π‘‡)
2220, 21, 2mrexval 34159 . . . . . . 7 (𝑇 ∈ V β†’ (mRExβ€˜π‘‡) = Word ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
2319, 22syl 17 . . . . . 6 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ (mRExβ€˜π‘‡) = Word ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
2414, 23eleqtrrd 2837 . . . . 5 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ βŸ¨β€œπ‘β€βŸ© ∈ (mRExβ€˜π‘‡))
25 fvco3 6944 . . . . 5 ((𝐺:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡) ∧ βŸ¨β€œπ‘β€βŸ© ∈ (mRExβ€˜π‘‡)) β†’ ((𝐹 ∘ 𝐺)β€˜βŸ¨β€œπ‘β€βŸ©) = (πΉβ€˜(πΊβ€˜βŸ¨β€œπ‘β€βŸ©)))
269, 24, 25syl2anc 585 . . . 4 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ ((𝐹 ∘ 𝐺)β€˜βŸ¨β€œπ‘β€βŸ©) = (πΉβ€˜(πΊβ€˜βŸ¨β€œπ‘β€βŸ©)))
271, 2, 21, 20mrsubcn 34177 . . . . . 6 ((𝐺 ∈ ran 𝑆 ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ (πΊβ€˜βŸ¨β€œπ‘β€βŸ©) = βŸ¨β€œπ‘β€βŸ©)
2827adantll 713 . . . . 5 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ (πΊβ€˜βŸ¨β€œπ‘β€βŸ©) = βŸ¨β€œπ‘β€βŸ©)
2928fveq2d 6850 . . . 4 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ (πΉβ€˜(πΊβ€˜βŸ¨β€œπ‘β€βŸ©)) = (πΉβ€˜βŸ¨β€œπ‘β€βŸ©))
301, 2, 21, 20mrsubcn 34177 . . . . 5 ((𝐹 ∈ ran 𝑆 ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ (πΉβ€˜βŸ¨β€œπ‘β€βŸ©) = βŸ¨β€œπ‘β€βŸ©)
3130adantlr 714 . . . 4 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ (πΉβ€˜βŸ¨β€œπ‘β€βŸ©) = βŸ¨β€œπ‘β€βŸ©)
3226, 29, 313eqtrd 2777 . . 3 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))) β†’ ((𝐹 ∘ 𝐺)β€˜βŸ¨β€œπ‘β€βŸ©) = βŸ¨β€œπ‘β€βŸ©)
3332ralrimiva 3140 . 2 ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ βˆ€π‘ ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))((𝐹 ∘ 𝐺)β€˜βŸ¨β€œπ‘β€βŸ©) = βŸ¨β€œπ‘β€βŸ©)
341, 2mrsubccat 34176 . . . . . . . 8 ((𝐺 ∈ ran 𝑆 ∧ π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡)) β†’ (πΊβ€˜(π‘₯ ++ 𝑦)) = ((πΊβ€˜π‘₯) ++ (πΊβ€˜π‘¦)))
35343expb 1121 . . . . . . 7 ((𝐺 ∈ ran 𝑆 ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ (πΊβ€˜(π‘₯ ++ 𝑦)) = ((πΊβ€˜π‘₯) ++ (πΊβ€˜π‘¦)))
3635adantll 713 . . . . . 6 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ (πΊβ€˜(π‘₯ ++ 𝑦)) = ((πΊβ€˜π‘₯) ++ (πΊβ€˜π‘¦)))
3736fveq2d 6850 . . . . 5 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ (πΉβ€˜(πΊβ€˜(π‘₯ ++ 𝑦))) = (πΉβ€˜((πΊβ€˜π‘₯) ++ (πΊβ€˜π‘¦))))
38 simpll 766 . . . . . 6 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ 𝐹 ∈ ran 𝑆)
396adantr 482 . . . . . . 7 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ 𝐺:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡))
40 simprl 770 . . . . . . 7 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ π‘₯ ∈ (mRExβ€˜π‘‡))
4139, 40ffvelcdmd 7040 . . . . . 6 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ (πΊβ€˜π‘₯) ∈ (mRExβ€˜π‘‡))
42 simprr 772 . . . . . . 7 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ 𝑦 ∈ (mRExβ€˜π‘‡))
4339, 42ffvelcdmd 7040 . . . . . 6 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ (πΊβ€˜π‘¦) ∈ (mRExβ€˜π‘‡))
441, 2mrsubccat 34176 . . . . . 6 ((𝐹 ∈ ran 𝑆 ∧ (πΊβ€˜π‘₯) ∈ (mRExβ€˜π‘‡) ∧ (πΊβ€˜π‘¦) ∈ (mRExβ€˜π‘‡)) β†’ (πΉβ€˜((πΊβ€˜π‘₯) ++ (πΊβ€˜π‘¦))) = ((πΉβ€˜(πΊβ€˜π‘₯)) ++ (πΉβ€˜(πΊβ€˜π‘¦))))
4538, 41, 43, 44syl3anc 1372 . . . . 5 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ (πΉβ€˜((πΊβ€˜π‘₯) ++ (πΊβ€˜π‘¦))) = ((πΉβ€˜(πΊβ€˜π‘₯)) ++ (πΉβ€˜(πΊβ€˜π‘¦))))
4637, 45eqtrd 2773 . . . 4 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ (πΉβ€˜(πΊβ€˜(π‘₯ ++ 𝑦))) = ((πΉβ€˜(πΊβ€˜π‘₯)) ++ (πΉβ€˜(πΊβ€˜π‘¦))))
4718, 22syl 17 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ (mRExβ€˜π‘‡) = Word ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
4847adantr 482 . . . . . . . 8 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ (mRExβ€˜π‘‡) = Word ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
4940, 48eleqtrd 2836 . . . . . . 7 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ π‘₯ ∈ Word ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
5042, 48eleqtrd 2836 . . . . . . 7 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ 𝑦 ∈ Word ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
51 ccatcl 14471 . . . . . . 7 ((π‘₯ ∈ Word ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)) ∧ 𝑦 ∈ Word ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡))) β†’ (π‘₯ ++ 𝑦) ∈ Word ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
5249, 50, 51syl2anc 585 . . . . . 6 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ (π‘₯ ++ 𝑦) ∈ Word ((mCNβ€˜π‘‡) βˆͺ (mVRβ€˜π‘‡)))
5352, 48eleqtrrd 2837 . . . . 5 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ (π‘₯ ++ 𝑦) ∈ (mRExβ€˜π‘‡))
54 fvco3 6944 . . . . 5 ((𝐺:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡) ∧ (π‘₯ ++ 𝑦) ∈ (mRExβ€˜π‘‡)) β†’ ((𝐹 ∘ 𝐺)β€˜(π‘₯ ++ 𝑦)) = (πΉβ€˜(πΊβ€˜(π‘₯ ++ 𝑦))))
5539, 53, 54syl2anc 585 . . . 4 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ ((𝐹 ∘ 𝐺)β€˜(π‘₯ ++ 𝑦)) = (πΉβ€˜(πΊβ€˜(π‘₯ ++ 𝑦))))
56 fvco3 6944 . . . . . 6 ((𝐺:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡) ∧ π‘₯ ∈ (mRExβ€˜π‘‡)) β†’ ((𝐹 ∘ 𝐺)β€˜π‘₯) = (πΉβ€˜(πΊβ€˜π‘₯)))
5739, 40, 56syl2anc 585 . . . . 5 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ ((𝐹 ∘ 𝐺)β€˜π‘₯) = (πΉβ€˜(πΊβ€˜π‘₯)))
58 fvco3 6944 . . . . . 6 ((𝐺:(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡)) β†’ ((𝐹 ∘ 𝐺)β€˜π‘¦) = (πΉβ€˜(πΊβ€˜π‘¦)))
5939, 42, 58syl2anc 585 . . . . 5 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ ((𝐹 ∘ 𝐺)β€˜π‘¦) = (πΉβ€˜(πΊβ€˜π‘¦)))
6057, 59oveq12d 7379 . . . 4 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ (((𝐹 ∘ 𝐺)β€˜π‘₯) ++ ((𝐹 ∘ 𝐺)β€˜π‘¦)) = ((πΉβ€˜(πΊβ€˜π‘₯)) ++ (πΉβ€˜(πΊβ€˜π‘¦))))
6146, 55, 603eqtr4d 2783 . . 3 (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (π‘₯ ∈ (mRExβ€˜π‘‡) ∧ 𝑦 ∈ (mRExβ€˜π‘‡))) β†’ ((𝐹 ∘ 𝐺)β€˜(π‘₯ ++ 𝑦)) = (((𝐹 ∘ 𝐺)β€˜π‘₯) ++ ((𝐹 ∘ 𝐺)β€˜π‘¦)))
6261ralrimivva 3194 . 2 ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ βˆ€π‘₯ ∈ (mRExβ€˜π‘‡)βˆ€π‘¦ ∈ (mRExβ€˜π‘‡)((𝐹 ∘ 𝐺)β€˜(π‘₯ ++ 𝑦)) = (((𝐹 ∘ 𝐺)β€˜π‘₯) ++ ((𝐹 ∘ 𝐺)β€˜π‘¦)))
631, 2, 21, 20elmrsubrn 34178 . . 3 (𝑇 ∈ V β†’ ((𝐹 ∘ 𝐺) ∈ ran 𝑆 ↔ ((𝐹 ∘ 𝐺):(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡) ∧ βˆ€π‘ ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))((𝐹 ∘ 𝐺)β€˜βŸ¨β€œπ‘β€βŸ©) = βŸ¨β€œπ‘β€βŸ© ∧ βˆ€π‘₯ ∈ (mRExβ€˜π‘‡)βˆ€π‘¦ ∈ (mRExβ€˜π‘‡)((𝐹 ∘ 𝐺)β€˜(π‘₯ ++ 𝑦)) = (((𝐹 ∘ 𝐺)β€˜π‘₯) ++ ((𝐹 ∘ 𝐺)β€˜π‘¦)))))
6418, 63syl 17 . 2 ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ ((𝐹 ∘ 𝐺) ∈ ran 𝑆 ↔ ((𝐹 ∘ 𝐺):(mRExβ€˜π‘‡)⟢(mRExβ€˜π‘‡) ∧ βˆ€π‘ ∈ ((mCNβ€˜π‘‡) βˆ– (mVRβ€˜π‘‡))((𝐹 ∘ 𝐺)β€˜βŸ¨β€œπ‘β€βŸ©) = βŸ¨β€œπ‘β€βŸ© ∧ βˆ€π‘₯ ∈ (mRExβ€˜π‘‡)βˆ€π‘¦ ∈ (mRExβ€˜π‘‡)((𝐹 ∘ 𝐺)β€˜(π‘₯ ++ 𝑦)) = (((𝐹 ∘ 𝐺)β€˜π‘₯) ++ ((𝐹 ∘ 𝐺)β€˜π‘¦)))))
658, 33, 62, 64mpbir3and 1343 1 ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) β†’ (𝐹 ∘ 𝐺) ∈ ran 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  Vcvv 3447   βˆ– cdif 3911   βˆͺ cun 3912  βˆ…c0 4286  ran crn 5638   ∘ ccom 5641  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361  Word cword 14411   ++ cconcat 14467  βŸ¨β€œcs1 14492  mCNcmcn 34118  mVRcmvar 34119  mRExcmrex 34124  mRSubstcmrsub 34128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-pm 8774  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-n0 12422  df-xnn0 12494  df-z 12508  df-uz 12772  df-fz 13434  df-fzo 13577  df-seq 13916  df-hash 14240  df-word 14412  df-lsw 14460  df-concat 14468  df-s1 14493  df-substr 14538  df-pfx 14568  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-0g 17331  df-gsum 17332  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-mhm 18609  df-submnd 18610  df-frmd 18667  df-vrmd 18668  df-mrex 34144  df-mrsub 34148
This theorem is referenced by:  msubco  34189
  Copyright terms: Public domain W3C validator