Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubco Structured version   Visualization version   GIF version

Theorem mrsubco 33383
Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mrsubco.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubco ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)

Proof of Theorem mrsubco
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubco.s . . . . 5 𝑆 = (mRSubst‘𝑇)
2 eqid 2738 . . . . 5 (mREx‘𝑇) = (mREx‘𝑇)
31, 2mrsubf 33379 . . . 4 (𝐹 ∈ ran 𝑆𝐹:(mREx‘𝑇)⟶(mREx‘𝑇))
43adantr 480 . . 3 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → 𝐹:(mREx‘𝑇)⟶(mREx‘𝑇))
51, 2mrsubf 33379 . . . 4 (𝐺 ∈ ran 𝑆𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
65adantl 481 . . 3 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
7 fco 6608 . . 3 ((𝐹:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) → (𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇))
84, 6, 7syl2anc 583 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇))
96adantr 480 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
10 eldifi 4057 . . . . . . . . 9 (𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇)) → 𝑐 ∈ (mCN‘𝑇))
11 elun1 4106 . . . . . . . . 9 (𝑐 ∈ (mCN‘𝑇) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
1210, 11syl 17 . . . . . . . 8 (𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇)) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
1312adantl 481 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
1413s1cld 14236 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ⟨“𝑐”⟩ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
15 n0i 4264 . . . . . . . . . 10 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
161rnfvprc 6750 . . . . . . . . . 10 𝑇 ∈ V → ran 𝑆 = ∅)
1715, 16nsyl2 141 . . . . . . . . 9 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
1817adantr 480 . . . . . . . 8 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → 𝑇 ∈ V)
1918adantr 480 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝑇 ∈ V)
20 eqid 2738 . . . . . . . 8 (mCN‘𝑇) = (mCN‘𝑇)
21 eqid 2738 . . . . . . . 8 (mVR‘𝑇) = (mVR‘𝑇)
2220, 21, 2mrexval 33363 . . . . . . 7 (𝑇 ∈ V → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2319, 22syl 17 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2414, 23eleqtrrd 2842 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ⟨“𝑐”⟩ ∈ (mREx‘𝑇))
25 fvco3 6849 . . . . 5 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ⟨“𝑐”⟩ ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘⟨“𝑐”⟩) = (𝐹‘(𝐺‘⟨“𝑐”⟩)))
269, 24, 25syl2anc 583 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ((𝐹𝐺)‘⟨“𝑐”⟩) = (𝐹‘(𝐺‘⟨“𝑐”⟩)))
271, 2, 21, 20mrsubcn 33381 . . . . . 6 ((𝐺 ∈ ran 𝑆𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐺‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
2827adantll 710 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐺‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
2928fveq2d 6760 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘(𝐺‘⟨“𝑐”⟩)) = (𝐹‘⟨“𝑐”⟩))
301, 2, 21, 20mrsubcn 33381 . . . . 5 ((𝐹 ∈ ran 𝑆𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
3130adantlr 711 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
3226, 29, 313eqtrd 2782 . . 3 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
3332ralrimiva 3107 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
341, 2mrsubccat 33380 . . . . . . . 8 ((𝐺 ∈ ran 𝑆𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇)) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺𝑥) ++ (𝐺𝑦)))
35343expb 1118 . . . . . . 7 ((𝐺 ∈ ran 𝑆 ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺𝑥) ++ (𝐺𝑦)))
3635adantll 710 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺𝑥) ++ (𝐺𝑦)))
3736fveq2d 6760 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘(𝐺‘(𝑥 ++ 𝑦))) = (𝐹‘((𝐺𝑥) ++ (𝐺𝑦))))
38 simpll 763 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝐹 ∈ ran 𝑆)
396adantr 480 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
40 simprl 767 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑥 ∈ (mREx‘𝑇))
4139, 40ffvelrnd 6944 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺𝑥) ∈ (mREx‘𝑇))
42 simprr 769 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑦 ∈ (mREx‘𝑇))
4339, 42ffvelrnd 6944 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺𝑦) ∈ (mREx‘𝑇))
441, 2mrsubccat 33380 . . . . . 6 ((𝐹 ∈ ran 𝑆 ∧ (𝐺𝑥) ∈ (mREx‘𝑇) ∧ (𝐺𝑦) ∈ (mREx‘𝑇)) → (𝐹‘((𝐺𝑥) ++ (𝐺𝑦))) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
4538, 41, 43, 44syl3anc 1369 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘((𝐺𝑥) ++ (𝐺𝑦))) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
4637, 45eqtrd 2778 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘(𝐺‘(𝑥 ++ 𝑦))) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
4718, 22syl 17 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4847adantr 480 . . . . . . . 8 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4940, 48eleqtrd 2841 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑥 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5042, 48eleqtrd 2841 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑦 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
51 ccatcl 14205 . . . . . . 7 ((𝑥 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑦 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (𝑥 ++ 𝑦) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5249, 50, 51syl2anc 583 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝑥 ++ 𝑦) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5352, 48eleqtrrd 2842 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝑥 ++ 𝑦) ∈ (mREx‘𝑇))
54 fvco3 6849 . . . . 5 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ (𝑥 ++ 𝑦) ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (𝐹‘(𝐺‘(𝑥 ++ 𝑦))))
5539, 53, 54syl2anc 583 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (𝐹‘(𝐺‘(𝑥 ++ 𝑦))))
56 fvco3 6849 . . . . . 6 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝑥 ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
5739, 40, 56syl2anc 583 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
58 fvco3 6849 . . . . . 6 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
5939, 42, 58syl2anc 583 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
6057, 59oveq12d 7273 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
6146, 55, 603eqtr4d 2788 . . 3 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))
6261ralrimivva 3114 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → ∀𝑥 ∈ (mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))
631, 2, 21, 20elmrsubrn 33382 . . 3 (𝑇 ∈ V → ((𝐹𝐺) ∈ ran 𝑆 ↔ ((𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥 ∈ (mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))))
6418, 63syl 17 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → ((𝐹𝐺) ∈ ran 𝑆 ↔ ((𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥 ∈ (mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))))
658, 33, 62, 64mpbir3and 1340 1 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  cun 3881  c0 4253  ran crn 5581  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228  mCNcmcn 33322  mVRcmvar 33323  mRExcmrex 33328  mRSubstcmrsub 33332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-frmd 18403  df-vrmd 18404  df-mrex 33348  df-mrsub 33352
This theorem is referenced by:  msubco  33393
  Copyright terms: Public domain W3C validator