Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubco Structured version   Visualization version   GIF version

Theorem mrsubco 33483
Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mrsubco.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubco ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)

Proof of Theorem mrsubco
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubco.s . . . . 5 𝑆 = (mRSubst‘𝑇)
2 eqid 2738 . . . . 5 (mREx‘𝑇) = (mREx‘𝑇)
31, 2mrsubf 33479 . . . 4 (𝐹 ∈ ran 𝑆𝐹:(mREx‘𝑇)⟶(mREx‘𝑇))
43adantr 481 . . 3 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → 𝐹:(mREx‘𝑇)⟶(mREx‘𝑇))
51, 2mrsubf 33479 . . . 4 (𝐺 ∈ ran 𝑆𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
65adantl 482 . . 3 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
7 fco 6624 . . 3 ((𝐹:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) → (𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇))
84, 6, 7syl2anc 584 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇))
96adantr 481 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
10 eldifi 4061 . . . . . . . . 9 (𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇)) → 𝑐 ∈ (mCN‘𝑇))
11 elun1 4110 . . . . . . . . 9 (𝑐 ∈ (mCN‘𝑇) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
1210, 11syl 17 . . . . . . . 8 (𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇)) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
1312adantl 482 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
1413s1cld 14308 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ⟨“𝑐”⟩ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
15 n0i 4267 . . . . . . . . . 10 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
161rnfvprc 6768 . . . . . . . . . 10 𝑇 ∈ V → ran 𝑆 = ∅)
1715, 16nsyl2 141 . . . . . . . . 9 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
1817adantr 481 . . . . . . . 8 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → 𝑇 ∈ V)
1918adantr 481 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝑇 ∈ V)
20 eqid 2738 . . . . . . . 8 (mCN‘𝑇) = (mCN‘𝑇)
21 eqid 2738 . . . . . . . 8 (mVR‘𝑇) = (mVR‘𝑇)
2220, 21, 2mrexval 33463 . . . . . . 7 (𝑇 ∈ V → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2319, 22syl 17 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2414, 23eleqtrrd 2842 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ⟨“𝑐”⟩ ∈ (mREx‘𝑇))
25 fvco3 6867 . . . . 5 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ⟨“𝑐”⟩ ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘⟨“𝑐”⟩) = (𝐹‘(𝐺‘⟨“𝑐”⟩)))
269, 24, 25syl2anc 584 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ((𝐹𝐺)‘⟨“𝑐”⟩) = (𝐹‘(𝐺‘⟨“𝑐”⟩)))
271, 2, 21, 20mrsubcn 33481 . . . . . 6 ((𝐺 ∈ ran 𝑆𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐺‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
2827adantll 711 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐺‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
2928fveq2d 6778 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘(𝐺‘⟨“𝑐”⟩)) = (𝐹‘⟨“𝑐”⟩))
301, 2, 21, 20mrsubcn 33481 . . . . 5 ((𝐹 ∈ ran 𝑆𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
3130adantlr 712 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
3226, 29, 313eqtrd 2782 . . 3 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
3332ralrimiva 3103 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
341, 2mrsubccat 33480 . . . . . . . 8 ((𝐺 ∈ ran 𝑆𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇)) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺𝑥) ++ (𝐺𝑦)))
35343expb 1119 . . . . . . 7 ((𝐺 ∈ ran 𝑆 ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺𝑥) ++ (𝐺𝑦)))
3635adantll 711 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺𝑥) ++ (𝐺𝑦)))
3736fveq2d 6778 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘(𝐺‘(𝑥 ++ 𝑦))) = (𝐹‘((𝐺𝑥) ++ (𝐺𝑦))))
38 simpll 764 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝐹 ∈ ran 𝑆)
396adantr 481 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
40 simprl 768 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑥 ∈ (mREx‘𝑇))
4139, 40ffvelrnd 6962 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺𝑥) ∈ (mREx‘𝑇))
42 simprr 770 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑦 ∈ (mREx‘𝑇))
4339, 42ffvelrnd 6962 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺𝑦) ∈ (mREx‘𝑇))
441, 2mrsubccat 33480 . . . . . 6 ((𝐹 ∈ ran 𝑆 ∧ (𝐺𝑥) ∈ (mREx‘𝑇) ∧ (𝐺𝑦) ∈ (mREx‘𝑇)) → (𝐹‘((𝐺𝑥) ++ (𝐺𝑦))) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
4538, 41, 43, 44syl3anc 1370 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘((𝐺𝑥) ++ (𝐺𝑦))) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
4637, 45eqtrd 2778 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘(𝐺‘(𝑥 ++ 𝑦))) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
4718, 22syl 17 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4847adantr 481 . . . . . . . 8 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4940, 48eleqtrd 2841 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑥 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5042, 48eleqtrd 2841 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑦 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
51 ccatcl 14277 . . . . . . 7 ((𝑥 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑦 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (𝑥 ++ 𝑦) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5249, 50, 51syl2anc 584 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝑥 ++ 𝑦) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5352, 48eleqtrrd 2842 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝑥 ++ 𝑦) ∈ (mREx‘𝑇))
54 fvco3 6867 . . . . 5 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ (𝑥 ++ 𝑦) ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (𝐹‘(𝐺‘(𝑥 ++ 𝑦))))
5539, 53, 54syl2anc 584 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (𝐹‘(𝐺‘(𝑥 ++ 𝑦))))
56 fvco3 6867 . . . . . 6 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝑥 ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
5739, 40, 56syl2anc 584 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
58 fvco3 6867 . . . . . 6 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
5939, 42, 58syl2anc 584 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
6057, 59oveq12d 7293 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
6146, 55, 603eqtr4d 2788 . . 3 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))
6261ralrimivva 3123 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → ∀𝑥 ∈ (mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))
631, 2, 21, 20elmrsubrn 33482 . . 3 (𝑇 ∈ V → ((𝐹𝐺) ∈ ran 𝑆 ↔ ((𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥 ∈ (mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))))
6418, 63syl 17 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → ((𝐹𝐺) ∈ ran 𝑆 ↔ ((𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥 ∈ (mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))))
658, 33, 62, 64mpbir3and 1341 1 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cdif 3884  cun 3885  c0 4256  ran crn 5590  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300  mCNcmcn 33422  mVRcmvar 33423  mRExcmrex 33428  mRSubstcmrsub 33432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-frmd 18488  df-vrmd 18489  df-mrex 33448  df-mrsub 33452
This theorem is referenced by:  msubco  33493
  Copyright terms: Public domain W3C validator