Step | Hyp | Ref
| Expression |
1 | | mrsubco.s |
. . . . 5
⊢ 𝑆 = (mRSubst‘𝑇) |
2 | | eqid 2738 |
. . . . 5
⊢
(mREx‘𝑇) =
(mREx‘𝑇) |
3 | 1, 2 | mrsubf 33479 |
. . . 4
⊢ (𝐹 ∈ ran 𝑆 → 𝐹:(mREx‘𝑇)⟶(mREx‘𝑇)) |
4 | 3 | adantr 481 |
. . 3
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → 𝐹:(mREx‘𝑇)⟶(mREx‘𝑇)) |
5 | 1, 2 | mrsubf 33479 |
. . . 4
⊢ (𝐺 ∈ ran 𝑆 → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) |
6 | 5 | adantl 482 |
. . 3
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) |
7 | | fco 6624 |
. . 3
⊢ ((𝐹:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) → (𝐹 ∘ 𝐺):(mREx‘𝑇)⟶(mREx‘𝑇)) |
8 | 4, 6, 7 | syl2anc 584 |
. 2
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺):(mREx‘𝑇)⟶(mREx‘𝑇)) |
9 | 6 | adantr 481 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) |
10 | | eldifi 4061 |
. . . . . . . . 9
⊢ (𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇)) → 𝑐 ∈ (mCN‘𝑇)) |
11 | | elun1 4110 |
. . . . . . . . 9
⊢ (𝑐 ∈ (mCN‘𝑇) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇)) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
13 | 12 | adantl 482 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
14 | 13 | s1cld 14308 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 〈“𝑐”〉 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
15 | | n0i 4267 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) |
16 | 1 | rnfvprc 6768 |
. . . . . . . . . 10
⊢ (¬
𝑇 ∈ V → ran 𝑆 = ∅) |
17 | 15, 16 | nsyl2 141 |
. . . . . . . . 9
⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
18 | 17 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → 𝑇 ∈ V) |
19 | 18 | adantr 481 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝑇 ∈ V) |
20 | | eqid 2738 |
. . . . . . . 8
⊢
(mCN‘𝑇) =
(mCN‘𝑇) |
21 | | eqid 2738 |
. . . . . . . 8
⊢
(mVR‘𝑇) =
(mVR‘𝑇) |
22 | 20, 21, 2 | mrexval 33463 |
. . . . . . 7
⊢ (𝑇 ∈ V →
(mREx‘𝑇) = Word
((mCN‘𝑇) ∪
(mVR‘𝑇))) |
23 | 19, 22 | syl 17 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
24 | 14, 23 | eleqtrrd 2842 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 〈“𝑐”〉 ∈ (mREx‘𝑇)) |
25 | | fvco3 6867 |
. . . . 5
⊢ ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 〈“𝑐”〉 ∈ (mREx‘𝑇)) → ((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = (𝐹‘(𝐺‘〈“𝑐”〉))) |
26 | 9, 24, 25 | syl2anc 584 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = (𝐹‘(𝐺‘〈“𝑐”〉))) |
27 | 1, 2, 21, 20 | mrsubcn 33481 |
. . . . . 6
⊢ ((𝐺 ∈ ran 𝑆 ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐺‘〈“𝑐”〉) = 〈“𝑐”〉) |
28 | 27 | adantll 711 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐺‘〈“𝑐”〉) = 〈“𝑐”〉) |
29 | 28 | fveq2d 6778 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘(𝐺‘〈“𝑐”〉)) = (𝐹‘〈“𝑐”〉)) |
30 | 1, 2, 21, 20 | mrsubcn 33481 |
. . . . 5
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘〈“𝑐”〉) = 〈“𝑐”〉) |
31 | 30 | adantlr 712 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘〈“𝑐”〉) = 〈“𝑐”〉) |
32 | 26, 29, 31 | 3eqtrd 2782 |
. . 3
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = 〈“𝑐”〉) |
33 | 32 | ralrimiva 3103 |
. 2
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = 〈“𝑐”〉) |
34 | 1, 2 | mrsubccat 33480 |
. . . . . . . 8
⊢ ((𝐺 ∈ ran 𝑆 ∧ 𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇)) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺‘𝑥) ++ (𝐺‘𝑦))) |
35 | 34 | 3expb 1119 |
. . . . . . 7
⊢ ((𝐺 ∈ ran 𝑆 ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺‘𝑥) ++ (𝐺‘𝑦))) |
36 | 35 | adantll 711 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺‘𝑥) ++ (𝐺‘𝑦))) |
37 | 36 | fveq2d 6778 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘(𝐺‘(𝑥 ++ 𝑦))) = (𝐹‘((𝐺‘𝑥) ++ (𝐺‘𝑦)))) |
38 | | simpll 764 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝐹 ∈ ran 𝑆) |
39 | 6 | adantr 481 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) |
40 | | simprl 768 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑥 ∈ (mREx‘𝑇)) |
41 | 39, 40 | ffvelrnd 6962 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘𝑥) ∈ (mREx‘𝑇)) |
42 | | simprr 770 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑦 ∈ (mREx‘𝑇)) |
43 | 39, 42 | ffvelrnd 6962 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘𝑦) ∈ (mREx‘𝑇)) |
44 | 1, 2 | mrsubccat 33480 |
. . . . . 6
⊢ ((𝐹 ∈ ran 𝑆 ∧ (𝐺‘𝑥) ∈ (mREx‘𝑇) ∧ (𝐺‘𝑦) ∈ (mREx‘𝑇)) → (𝐹‘((𝐺‘𝑥) ++ (𝐺‘𝑦))) = ((𝐹‘(𝐺‘𝑥)) ++ (𝐹‘(𝐺‘𝑦)))) |
45 | 38, 41, 43, 44 | syl3anc 1370 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘((𝐺‘𝑥) ++ (𝐺‘𝑦))) = ((𝐹‘(𝐺‘𝑥)) ++ (𝐹‘(𝐺‘𝑦)))) |
46 | 37, 45 | eqtrd 2778 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘(𝐺‘(𝑥 ++ 𝑦))) = ((𝐹‘(𝐺‘𝑥)) ++ (𝐹‘(𝐺‘𝑦)))) |
47 | 18, 22 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
48 | 47 | adantr 481 |
. . . . . . . 8
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
49 | 40, 48 | eleqtrd 2841 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑥 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
50 | 42, 48 | eleqtrd 2841 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑦 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
51 | | ccatcl 14277 |
. . . . . . 7
⊢ ((𝑥 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑦 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (𝑥 ++ 𝑦) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
52 | 49, 50, 51 | syl2anc 584 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝑥 ++ 𝑦) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
53 | 52, 48 | eleqtrrd 2842 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝑥 ++ 𝑦) ∈ (mREx‘𝑇)) |
54 | | fvco3 6867 |
. . . . 5
⊢ ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ (𝑥 ++ 𝑦) ∈ (mREx‘𝑇)) → ((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (𝐹‘(𝐺‘(𝑥 ++ 𝑦)))) |
55 | 39, 53, 54 | syl2anc 584 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (𝐹‘(𝐺‘(𝑥 ++ 𝑦)))) |
56 | | fvco3 6867 |
. . . . . 6
⊢ ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝑥 ∈ (mREx‘𝑇)) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
57 | 39, 40, 56 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
58 | | fvco3 6867 |
. . . . . 6
⊢ ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇)) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
59 | 39, 42, 58 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
60 | 57, 59 | oveq12d 7293 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (((𝐹 ∘ 𝐺)‘𝑥) ++ ((𝐹 ∘ 𝐺)‘𝑦)) = ((𝐹‘(𝐺‘𝑥)) ++ (𝐹‘(𝐺‘𝑦)))) |
61 | 46, 55, 60 | 3eqtr4d 2788 |
. . 3
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥) ++ ((𝐹 ∘ 𝐺)‘𝑦))) |
62 | 61 | ralrimivva 3123 |
. 2
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → ∀𝑥 ∈ (mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥) ++ ((𝐹 ∘ 𝐺)‘𝑦))) |
63 | 1, 2, 21, 20 | elmrsubrn 33482 |
. . 3
⊢ (𝑇 ∈ V → ((𝐹 ∘ 𝐺) ∈ ran 𝑆 ↔ ((𝐹 ∘ 𝐺):(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈
(mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥) ++ ((𝐹 ∘ 𝐺)‘𝑦))))) |
64 | 18, 63 | syl 17 |
. 2
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → ((𝐹 ∘ 𝐺) ∈ ran 𝑆 ↔ ((𝐹 ∘ 𝐺):(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈
(mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥) ++ ((𝐹 ∘ 𝐺)‘𝑦))))) |
65 | 8, 33, 62, 64 | mpbir3and 1341 |
1
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺) ∈ ran 𝑆) |