Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubco Structured version   Visualization version   GIF version

Theorem mrsubco 35481
Description: The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mrsubco.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubco ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)

Proof of Theorem mrsubco
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mrsubco.s . . . . 5 𝑆 = (mRSubst‘𝑇)
2 eqid 2729 . . . . 5 (mREx‘𝑇) = (mREx‘𝑇)
31, 2mrsubf 35477 . . . 4 (𝐹 ∈ ran 𝑆𝐹:(mREx‘𝑇)⟶(mREx‘𝑇))
43adantr 480 . . 3 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → 𝐹:(mREx‘𝑇)⟶(mREx‘𝑇))
51, 2mrsubf 35477 . . . 4 (𝐺 ∈ ran 𝑆𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
65adantl 481 . . 3 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
7 fco 6694 . . 3 ((𝐹:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) → (𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇))
84, 6, 7syl2anc 584 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇))
96adantr 480 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
10 eldifi 4090 . . . . . . . . 9 (𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇)) → 𝑐 ∈ (mCN‘𝑇))
11 elun1 4141 . . . . . . . . 9 (𝑐 ∈ (mCN‘𝑇) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
1210, 11syl 17 . . . . . . . 8 (𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇)) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
1312adantl 481 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
1413s1cld 14544 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ⟨“𝑐”⟩ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
15 n0i 4299 . . . . . . . . . 10 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
161rnfvprc 6834 . . . . . . . . . 10 𝑇 ∈ V → ran 𝑆 = ∅)
1715, 16nsyl2 141 . . . . . . . . 9 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
1817adantr 480 . . . . . . . 8 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → 𝑇 ∈ V)
1918adantr 480 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝑇 ∈ V)
20 eqid 2729 . . . . . . . 8 (mCN‘𝑇) = (mCN‘𝑇)
21 eqid 2729 . . . . . . . 8 (mVR‘𝑇) = (mVR‘𝑇)
2220, 21, 2mrexval 35461 . . . . . . 7 (𝑇 ∈ V → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2319, 22syl 17 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2414, 23eleqtrrd 2831 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ⟨“𝑐”⟩ ∈ (mREx‘𝑇))
25 fvco3 6942 . . . . 5 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ⟨“𝑐”⟩ ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘⟨“𝑐”⟩) = (𝐹‘(𝐺‘⟨“𝑐”⟩)))
269, 24, 25syl2anc 584 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ((𝐹𝐺)‘⟨“𝑐”⟩) = (𝐹‘(𝐺‘⟨“𝑐”⟩)))
271, 2, 21, 20mrsubcn 35479 . . . . . 6 ((𝐺 ∈ ran 𝑆𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐺‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
2827adantll 714 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐺‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
2928fveq2d 6844 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘(𝐺‘⟨“𝑐”⟩)) = (𝐹‘⟨“𝑐”⟩))
301, 2, 21, 20mrsubcn 35479 . . . . 5 ((𝐹 ∈ ran 𝑆𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
3130adantlr 715 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
3226, 29, 313eqtrd 2768 . . 3 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
3332ralrimiva 3125 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩)
341, 2mrsubccat 35478 . . . . . . . 8 ((𝐺 ∈ ran 𝑆𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇)) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺𝑥) ++ (𝐺𝑦)))
35343expb 1120 . . . . . . 7 ((𝐺 ∈ ran 𝑆 ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺𝑥) ++ (𝐺𝑦)))
3635adantll 714 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺𝑥) ++ (𝐺𝑦)))
3736fveq2d 6844 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘(𝐺‘(𝑥 ++ 𝑦))) = (𝐹‘((𝐺𝑥) ++ (𝐺𝑦))))
38 simpll 766 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝐹 ∈ ran 𝑆)
396adantr 480 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇))
40 simprl 770 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑥 ∈ (mREx‘𝑇))
4139, 40ffvelcdmd 7039 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺𝑥) ∈ (mREx‘𝑇))
42 simprr 772 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑦 ∈ (mREx‘𝑇))
4339, 42ffvelcdmd 7039 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺𝑦) ∈ (mREx‘𝑇))
441, 2mrsubccat 35478 . . . . . 6 ((𝐹 ∈ ran 𝑆 ∧ (𝐺𝑥) ∈ (mREx‘𝑇) ∧ (𝐺𝑦) ∈ (mREx‘𝑇)) → (𝐹‘((𝐺𝑥) ++ (𝐺𝑦))) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
4538, 41, 43, 44syl3anc 1373 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘((𝐺𝑥) ++ (𝐺𝑦))) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
4637, 45eqtrd 2764 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘(𝐺‘(𝑥 ++ 𝑦))) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
4718, 22syl 17 . . . . . . . . 9 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4847adantr 480 . . . . . . . 8 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4940, 48eleqtrd 2830 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑥 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5042, 48eleqtrd 2830 . . . . . . 7 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑦 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
51 ccatcl 14515 . . . . . . 7 ((𝑥 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑦 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (𝑥 ++ 𝑦) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5249, 50, 51syl2anc 584 . . . . . 6 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝑥 ++ 𝑦) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5352, 48eleqtrrd 2831 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝑥 ++ 𝑦) ∈ (mREx‘𝑇))
54 fvco3 6942 . . . . 5 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ (𝑥 ++ 𝑦) ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (𝐹‘(𝐺‘(𝑥 ++ 𝑦))))
5539, 53, 54syl2anc 584 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (𝐹‘(𝐺‘(𝑥 ++ 𝑦))))
56 fvco3 6942 . . . . . 6 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝑥 ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
5739, 40, 56syl2anc 584 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
58 fvco3 6942 . . . . . 6 ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
5939, 42, 58syl2anc 584 . . . . 5 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
6057, 59oveq12d 7387 . . . 4 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)) = ((𝐹‘(𝐺𝑥)) ++ (𝐹‘(𝐺𝑦))))
6146, 55, 603eqtr4d 2774 . . 3 (((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))
6261ralrimivva 3178 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → ∀𝑥 ∈ (mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))
631, 2, 21, 20elmrsubrn 35480 . . 3 (𝑇 ∈ V → ((𝐹𝐺) ∈ ran 𝑆 ↔ ((𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥 ∈ (mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))))
6418, 63syl 17 . 2 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → ((𝐹𝐺) ∈ ran 𝑆 ↔ ((𝐹𝐺):(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹𝐺)‘⟨“𝑐”⟩) = ⟨“𝑐”⟩ ∧ ∀𝑥 ∈ (mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹𝐺)‘𝑥) ++ ((𝐹𝐺)‘𝑦)))))
658, 33, 62, 64mpbir3and 1343 1 ((𝐹 ∈ ran 𝑆𝐺 ∈ ran 𝑆) → (𝐹𝐺) ∈ ran 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cdif 3908  cun 3909  c0 4292  ran crn 5632  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  Word cword 14454   ++ cconcat 14511  ⟨“cs1 14536  mCNcmcn 35420  mVRcmvar 35421  mRExcmrex 35426  mRSubstcmrsub 35430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-frmd 18752  df-vrmd 18753  df-mrex 35446  df-mrsub 35450
This theorem is referenced by:  msubco  35491
  Copyright terms: Public domain W3C validator