| Step | Hyp | Ref
| Expression |
| 1 | | mrsubco.s |
. . . . 5
⊢ 𝑆 = (mRSubst‘𝑇) |
| 2 | | eqid 2737 |
. . . . 5
⊢
(mREx‘𝑇) =
(mREx‘𝑇) |
| 3 | 1, 2 | mrsubf 35522 |
. . . 4
⊢ (𝐹 ∈ ran 𝑆 → 𝐹:(mREx‘𝑇)⟶(mREx‘𝑇)) |
| 4 | 3 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → 𝐹:(mREx‘𝑇)⟶(mREx‘𝑇)) |
| 5 | 1, 2 | mrsubf 35522 |
. . . 4
⊢ (𝐺 ∈ ran 𝑆 → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) |
| 6 | 5 | adantl 481 |
. . 3
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) |
| 7 | | fco 6760 |
. . 3
⊢ ((𝐹:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) → (𝐹 ∘ 𝐺):(mREx‘𝑇)⟶(mREx‘𝑇)) |
| 8 | 4, 6, 7 | syl2anc 584 |
. 2
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺):(mREx‘𝑇)⟶(mREx‘𝑇)) |
| 9 | 6 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) |
| 10 | | eldifi 4131 |
. . . . . . . . 9
⊢ (𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇)) → 𝑐 ∈ (mCN‘𝑇)) |
| 11 | | elun1 4182 |
. . . . . . . . 9
⊢ (𝑐 ∈ (mCN‘𝑇) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇)) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 13 | 12 | adantl 481 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝑐 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 14 | 13 | s1cld 14641 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 〈“𝑐”〉 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 15 | | n0i 4340 |
. . . . . . . . . 10
⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) |
| 16 | 1 | rnfvprc 6900 |
. . . . . . . . . 10
⊢ (¬
𝑇 ∈ V → ran 𝑆 = ∅) |
| 17 | 15, 16 | nsyl2 141 |
. . . . . . . . 9
⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
| 18 | 17 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → 𝑇 ∈ V) |
| 19 | 18 | adantr 480 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 𝑇 ∈ V) |
| 20 | | eqid 2737 |
. . . . . . . 8
⊢
(mCN‘𝑇) =
(mCN‘𝑇) |
| 21 | | eqid 2737 |
. . . . . . . 8
⊢
(mVR‘𝑇) =
(mVR‘𝑇) |
| 22 | 20, 21, 2 | mrexval 35506 |
. . . . . . 7
⊢ (𝑇 ∈ V →
(mREx‘𝑇) = Word
((mCN‘𝑇) ∪
(mVR‘𝑇))) |
| 23 | 19, 22 | syl 17 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 24 | 14, 23 | eleqtrrd 2844 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → 〈“𝑐”〉 ∈ (mREx‘𝑇)) |
| 25 | | fvco3 7008 |
. . . . 5
⊢ ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 〈“𝑐”〉 ∈ (mREx‘𝑇)) → ((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = (𝐹‘(𝐺‘〈“𝑐”〉))) |
| 26 | 9, 24, 25 | syl2anc 584 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = (𝐹‘(𝐺‘〈“𝑐”〉))) |
| 27 | 1, 2, 21, 20 | mrsubcn 35524 |
. . . . . 6
⊢ ((𝐺 ∈ ran 𝑆 ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐺‘〈“𝑐”〉) = 〈“𝑐”〉) |
| 28 | 27 | adantll 714 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐺‘〈“𝑐”〉) = 〈“𝑐”〉) |
| 29 | 28 | fveq2d 6910 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘(𝐺‘〈“𝑐”〉)) = (𝐹‘〈“𝑐”〉)) |
| 30 | 1, 2, 21, 20 | mrsubcn 35524 |
. . . . 5
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘〈“𝑐”〉) = 〈“𝑐”〉) |
| 31 | 30 | adantlr 715 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → (𝐹‘〈“𝑐”〉) = 〈“𝑐”〉) |
| 32 | 26, 29, 31 | 3eqtrd 2781 |
. . 3
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ 𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))) → ((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = 〈“𝑐”〉) |
| 33 | 32 | ralrimiva 3146 |
. 2
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = 〈“𝑐”〉) |
| 34 | 1, 2 | mrsubccat 35523 |
. . . . . . . 8
⊢ ((𝐺 ∈ ran 𝑆 ∧ 𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇)) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺‘𝑥) ++ (𝐺‘𝑦))) |
| 35 | 34 | 3expb 1121 |
. . . . . . 7
⊢ ((𝐺 ∈ ran 𝑆 ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺‘𝑥) ++ (𝐺‘𝑦))) |
| 36 | 35 | adantll 714 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘(𝑥 ++ 𝑦)) = ((𝐺‘𝑥) ++ (𝐺‘𝑦))) |
| 37 | 36 | fveq2d 6910 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘(𝐺‘(𝑥 ++ 𝑦))) = (𝐹‘((𝐺‘𝑥) ++ (𝐺‘𝑦)))) |
| 38 | | simpll 767 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝐹 ∈ ran 𝑆) |
| 39 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝐺:(mREx‘𝑇)⟶(mREx‘𝑇)) |
| 40 | | simprl 771 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑥 ∈ (mREx‘𝑇)) |
| 41 | 39, 40 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘𝑥) ∈ (mREx‘𝑇)) |
| 42 | | simprr 773 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑦 ∈ (mREx‘𝑇)) |
| 43 | 39, 42 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐺‘𝑦) ∈ (mREx‘𝑇)) |
| 44 | 1, 2 | mrsubccat 35523 |
. . . . . 6
⊢ ((𝐹 ∈ ran 𝑆 ∧ (𝐺‘𝑥) ∈ (mREx‘𝑇) ∧ (𝐺‘𝑦) ∈ (mREx‘𝑇)) → (𝐹‘((𝐺‘𝑥) ++ (𝐺‘𝑦))) = ((𝐹‘(𝐺‘𝑥)) ++ (𝐹‘(𝐺‘𝑦)))) |
| 45 | 38, 41, 43, 44 | syl3anc 1373 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘((𝐺‘𝑥) ++ (𝐺‘𝑦))) = ((𝐹‘(𝐺‘𝑥)) ++ (𝐹‘(𝐺‘𝑦)))) |
| 46 | 37, 45 | eqtrd 2777 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝐹‘(𝐺‘(𝑥 ++ 𝑦))) = ((𝐹‘(𝐺‘𝑥)) ++ (𝐹‘(𝐺‘𝑦)))) |
| 47 | 18, 22 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 48 | 47 | adantr 480 |
. . . . . . . 8
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 49 | 40, 48 | eleqtrd 2843 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑥 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 50 | 42, 48 | eleqtrd 2843 |
. . . . . . 7
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → 𝑦 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 51 | | ccatcl 14612 |
. . . . . . 7
⊢ ((𝑥 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑦 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (𝑥 ++ 𝑦) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 52 | 49, 50, 51 | syl2anc 584 |
. . . . . 6
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝑥 ++ 𝑦) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 53 | 52, 48 | eleqtrrd 2844 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (𝑥 ++ 𝑦) ∈ (mREx‘𝑇)) |
| 54 | | fvco3 7008 |
. . . . 5
⊢ ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ (𝑥 ++ 𝑦) ∈ (mREx‘𝑇)) → ((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (𝐹‘(𝐺‘(𝑥 ++ 𝑦)))) |
| 55 | 39, 53, 54 | syl2anc 584 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (𝐹‘(𝐺‘(𝑥 ++ 𝑦)))) |
| 56 | | fvco3 7008 |
. . . . . 6
⊢ ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝑥 ∈ (mREx‘𝑇)) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
| 57 | 39, 40, 56 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
| 58 | | fvco3 7008 |
. . . . . 6
⊢ ((𝐺:(mREx‘𝑇)⟶(mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇)) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
| 59 | 39, 42, 58 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
| 60 | 57, 59 | oveq12d 7449 |
. . . 4
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → (((𝐹 ∘ 𝐺)‘𝑥) ++ ((𝐹 ∘ 𝐺)‘𝑦)) = ((𝐹‘(𝐺‘𝑥)) ++ (𝐹‘(𝐺‘𝑦)))) |
| 61 | 46, 55, 60 | 3eqtr4d 2787 |
. . 3
⊢ (((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) ∧ (𝑥 ∈ (mREx‘𝑇) ∧ 𝑦 ∈ (mREx‘𝑇))) → ((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥) ++ ((𝐹 ∘ 𝐺)‘𝑦))) |
| 62 | 61 | ralrimivva 3202 |
. 2
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → ∀𝑥 ∈ (mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥) ++ ((𝐹 ∘ 𝐺)‘𝑦))) |
| 63 | 1, 2, 21, 20 | elmrsubrn 35525 |
. . 3
⊢ (𝑇 ∈ V → ((𝐹 ∘ 𝐺) ∈ ran 𝑆 ↔ ((𝐹 ∘ 𝐺):(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈
(mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥) ++ ((𝐹 ∘ 𝐺)‘𝑦))))) |
| 64 | 18, 63 | syl 17 |
. 2
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → ((𝐹 ∘ 𝐺) ∈ ran 𝑆 ↔ ((𝐹 ∘ 𝐺):(mREx‘𝑇)⟶(mREx‘𝑇) ∧ ∀𝑐 ∈ ((mCN‘𝑇) ∖ (mVR‘𝑇))((𝐹 ∘ 𝐺)‘〈“𝑐”〉) = 〈“𝑐”〉 ∧
∀𝑥 ∈
(mREx‘𝑇)∀𝑦 ∈ (mREx‘𝑇)((𝐹 ∘ 𝐺)‘(𝑥 ++ 𝑦)) = (((𝐹 ∘ 𝐺)‘𝑥) ++ ((𝐹 ∘ 𝐺)‘𝑦))))) |
| 65 | 8, 33, 62, 64 | mpbir3and 1343 |
1
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺) ∈ ran 𝑆) |