Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsubcn | Structured version Visualization version GIF version |
Description: A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mrsubccat.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
mrsubccat.r | ⊢ 𝑅 = (mREx‘𝑇) |
mrsubcn.v | ⊢ 𝑉 = (mVR‘𝑇) |
mrsubcn.c | ⊢ 𝐶 = (mCN‘𝑇) |
Ref | Expression |
---|---|
mrsubcn | ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4277 | . . . . 5 ⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) | |
2 | mrsubccat.s | . . . . . 6 ⊢ 𝑆 = (mRSubst‘𝑇) | |
3 | 2 | rnfvprc 6805 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ∅) |
4 | 1, 3 | nsyl2 141 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
5 | mrsubcn.v | . . . . 5 ⊢ 𝑉 = (mVR‘𝑇) | |
6 | mrsubccat.r | . . . . 5 ⊢ 𝑅 = (mREx‘𝑇) | |
7 | 5, 6, 2 | mrsubff 33609 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
8 | ffun 6640 | . . . 4 ⊢ (𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅) → Fun 𝑆) | |
9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → Fun 𝑆) |
10 | 5, 6, 2 | mrsubrn 33610 | . . . . 5 ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) |
11 | 10 | eleq2i 2828 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
12 | 11 | biimpi 215 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
13 | fvelima 6874 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) → ∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹) | |
14 | 9, 12, 13 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹) |
15 | elmapi 8686 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑅 ↑m 𝑉) → 𝑓:𝑉⟶𝑅) | |
16 | 15 | adantl 482 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑓:𝑉⟶𝑅) |
17 | ssidd 3953 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ⊆ 𝑉) | |
18 | eldifi 4071 | . . . . . . . 8 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → 𝑋 ∈ 𝐶) | |
19 | elun1 4120 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝐶 ∪ 𝑉)) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → 𝑋 ∈ (𝐶 ∪ 𝑉)) |
21 | 20 | adantr 481 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑋 ∈ (𝐶 ∪ 𝑉)) |
22 | mrsubcn.c | . . . . . . 7 ⊢ 𝐶 = (mCN‘𝑇) | |
23 | 22, 5, 6, 2 | mrsubcv 33607 | . . . . . 6 ⊢ ((𝑓:𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉)) |
24 | 16, 17, 21, 23 | syl3anc 1370 | . . . . 5 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉)) |
25 | eldifn 4072 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → ¬ 𝑋 ∈ 𝑉) | |
26 | 25 | adantr 481 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ¬ 𝑋 ∈ 𝑉) |
27 | 26 | iffalsed 4481 | . . . . 5 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉) = 〈“𝑋”〉) |
28 | 24, 27 | eqtrd 2776 | . . . 4 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = 〈“𝑋”〉) |
29 | fveq1 6810 | . . . . 5 ⊢ ((𝑆‘𝑓) = 𝐹 → ((𝑆‘𝑓)‘〈“𝑋”〉) = (𝐹‘〈“𝑋”〉)) | |
30 | 29 | eqeq1d 2738 | . . . 4 ⊢ ((𝑆‘𝑓) = 𝐹 → (((𝑆‘𝑓)‘〈“𝑋”〉) = 〈“𝑋”〉 ↔ (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
31 | 28, 30 | syl5ibcom 244 | . . 3 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓) = 𝐹 → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
32 | 31 | rexlimdva 3148 | . 2 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → (∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹 → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
33 | 14, 32 | mpan9 507 | 1 ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 Vcvv 3440 ∖ cdif 3893 ∪ cun 3894 ⊆ wss 3896 ∅c0 4266 ifcif 4470 ran crn 5608 “ cima 5610 Fun wfun 6459 ⟶wf 6461 ‘cfv 6465 (class class class)co 7316 ↑m cmap 8664 ↑pm cpm 8665 〈“cs1 14377 mCNcmcn 33557 mVRcmvar 33558 mRExcmrex 33563 mRSubstcmrsub 33567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-fzo 13462 df-seq 13801 df-hash 14124 df-word 14296 df-concat 14352 df-s1 14378 df-struct 16922 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-0g 17226 df-gsum 17227 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-submnd 18505 df-frmd 18561 df-mrex 33583 df-mrsub 33587 |
This theorem is referenced by: elmrsubrn 33617 mrsubco 33618 mrsubvrs 33619 |
Copyright terms: Public domain | W3C validator |