![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsubcn | Structured version Visualization version GIF version |
Description: A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mrsubccat.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
mrsubccat.r | ⊢ 𝑅 = (mREx‘𝑇) |
mrsubcn.v | ⊢ 𝑉 = (mVR‘𝑇) |
mrsubcn.c | ⊢ 𝐶 = (mCN‘𝑇) |
Ref | Expression |
---|---|
mrsubcn | ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4363 | . . . . 5 ⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) | |
2 | mrsubccat.s | . . . . . 6 ⊢ 𝑆 = (mRSubst‘𝑇) | |
3 | 2 | rnfvprc 6914 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ∅) |
4 | 1, 3 | nsyl2 141 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
5 | mrsubcn.v | . . . . 5 ⊢ 𝑉 = (mVR‘𝑇) | |
6 | mrsubccat.r | . . . . 5 ⊢ 𝑅 = (mREx‘𝑇) | |
7 | 5, 6, 2 | mrsubff 35480 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
8 | ffun 6750 | . . . 4 ⊢ (𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅) → Fun 𝑆) | |
9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → Fun 𝑆) |
10 | 5, 6, 2 | mrsubrn 35481 | . . . . 5 ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) |
11 | 10 | eleq2i 2836 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
12 | 11 | biimpi 216 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
13 | fvelima 6987 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) → ∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹) | |
14 | 9, 12, 13 | syl2anc 583 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹) |
15 | elmapi 8907 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑅 ↑m 𝑉) → 𝑓:𝑉⟶𝑅) | |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑓:𝑉⟶𝑅) |
17 | ssidd 4032 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ⊆ 𝑉) | |
18 | eldifi 4154 | . . . . . . . 8 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → 𝑋 ∈ 𝐶) | |
19 | elun1 4205 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝐶 ∪ 𝑉)) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → 𝑋 ∈ (𝐶 ∪ 𝑉)) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑋 ∈ (𝐶 ∪ 𝑉)) |
22 | mrsubcn.c | . . . . . . 7 ⊢ 𝐶 = (mCN‘𝑇) | |
23 | 22, 5, 6, 2 | mrsubcv 35478 | . . . . . 6 ⊢ ((𝑓:𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉)) |
24 | 16, 17, 21, 23 | syl3anc 1371 | . . . . 5 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉)) |
25 | eldifn 4155 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → ¬ 𝑋 ∈ 𝑉) | |
26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ¬ 𝑋 ∈ 𝑉) |
27 | 26 | iffalsed 4559 | . . . . 5 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉) = 〈“𝑋”〉) |
28 | 24, 27 | eqtrd 2780 | . . . 4 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = 〈“𝑋”〉) |
29 | fveq1 6919 | . . . . 5 ⊢ ((𝑆‘𝑓) = 𝐹 → ((𝑆‘𝑓)‘〈“𝑋”〉) = (𝐹‘〈“𝑋”〉)) | |
30 | 29 | eqeq1d 2742 | . . . 4 ⊢ ((𝑆‘𝑓) = 𝐹 → (((𝑆‘𝑓)‘〈“𝑋”〉) = 〈“𝑋”〉 ↔ (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
31 | 28, 30 | syl5ibcom 245 | . . 3 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓) = 𝐹 → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
32 | 31 | rexlimdva 3161 | . 2 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → (∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹 → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
33 | 14, 32 | mpan9 506 | 1 ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 ifcif 4548 ran crn 5701 “ cima 5703 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ↑pm cpm 8885 〈“cs1 14643 mCNcmcn 35428 mVRcmvar 35429 mRExcmrex 35434 mRSubstcmrsub 35438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-gsum 17502 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-frmd 18884 df-mrex 35454 df-mrsub 35458 |
This theorem is referenced by: elmrsubrn 35488 mrsubco 35489 mrsubvrs 35490 |
Copyright terms: Public domain | W3C validator |