| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsubcn | Structured version Visualization version GIF version | ||
| Description: A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mrsubccat.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
| mrsubccat.r | ⊢ 𝑅 = (mREx‘𝑇) |
| mrsubcn.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mrsubcn.c | ⊢ 𝐶 = (mCN‘𝑇) |
| Ref | Expression |
|---|---|
| mrsubcn | ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4340 | . . . . 5 ⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) | |
| 2 | mrsubccat.s | . . . . . 6 ⊢ 𝑆 = (mRSubst‘𝑇) | |
| 3 | 2 | rnfvprc 6900 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ∅) |
| 4 | 1, 3 | nsyl2 141 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
| 5 | mrsubcn.v | . . . . 5 ⊢ 𝑉 = (mVR‘𝑇) | |
| 6 | mrsubccat.r | . . . . 5 ⊢ 𝑅 = (mREx‘𝑇) | |
| 7 | 5, 6, 2 | mrsubff 35517 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
| 8 | ffun 6739 | . . . 4 ⊢ (𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅) → Fun 𝑆) | |
| 9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → Fun 𝑆) |
| 10 | 5, 6, 2 | mrsubrn 35518 | . . . . 5 ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) |
| 11 | 10 | eleq2i 2833 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
| 12 | 11 | biimpi 216 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
| 13 | fvelima 6974 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) → ∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹) | |
| 14 | 9, 12, 13 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹) |
| 15 | elmapi 8889 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑅 ↑m 𝑉) → 𝑓:𝑉⟶𝑅) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑓:𝑉⟶𝑅) |
| 17 | ssidd 4007 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ⊆ 𝑉) | |
| 18 | eldifi 4131 | . . . . . . . 8 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → 𝑋 ∈ 𝐶) | |
| 19 | elun1 4182 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝐶 ∪ 𝑉)) | |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → 𝑋 ∈ (𝐶 ∪ 𝑉)) |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑋 ∈ (𝐶 ∪ 𝑉)) |
| 22 | mrsubcn.c | . . . . . . 7 ⊢ 𝐶 = (mCN‘𝑇) | |
| 23 | 22, 5, 6, 2 | mrsubcv 35515 | . . . . . 6 ⊢ ((𝑓:𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉)) |
| 24 | 16, 17, 21, 23 | syl3anc 1373 | . . . . 5 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉)) |
| 25 | eldifn 4132 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → ¬ 𝑋 ∈ 𝑉) | |
| 26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ¬ 𝑋 ∈ 𝑉) |
| 27 | 26 | iffalsed 4536 | . . . . 5 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉) = 〈“𝑋”〉) |
| 28 | 24, 27 | eqtrd 2777 | . . . 4 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = 〈“𝑋”〉) |
| 29 | fveq1 6905 | . . . . 5 ⊢ ((𝑆‘𝑓) = 𝐹 → ((𝑆‘𝑓)‘〈“𝑋”〉) = (𝐹‘〈“𝑋”〉)) | |
| 30 | 29 | eqeq1d 2739 | . . . 4 ⊢ ((𝑆‘𝑓) = 𝐹 → (((𝑆‘𝑓)‘〈“𝑋”〉) = 〈“𝑋”〉 ↔ (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
| 31 | 28, 30 | syl5ibcom 245 | . . 3 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓) = 𝐹 → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
| 32 | 31 | rexlimdva 3155 | . 2 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → (∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹 → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
| 33 | 14, 32 | mpan9 506 | 1 ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 Vcvv 3480 ∖ cdif 3948 ∪ cun 3949 ⊆ wss 3951 ∅c0 4333 ifcif 4525 ran crn 5686 “ cima 5688 Fun wfun 6555 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 ↑pm cpm 8867 〈“cs1 14633 mCNcmcn 35465 mVRcmvar 35466 mRExcmrex 35471 mRSubstcmrsub 35475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-0g 17486 df-gsum 17487 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-frmd 18862 df-mrex 35491 df-mrsub 35495 |
| This theorem is referenced by: elmrsubrn 35525 mrsubco 35526 mrsubvrs 35527 |
| Copyright terms: Public domain | W3C validator |