Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsubcn | Structured version Visualization version GIF version |
Description: A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mrsubccat.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
mrsubccat.r | ⊢ 𝑅 = (mREx‘𝑇) |
mrsubcn.v | ⊢ 𝑉 = (mVR‘𝑇) |
mrsubcn.c | ⊢ 𝐶 = (mCN‘𝑇) |
Ref | Expression |
---|---|
mrsubcn | ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4264 | . . . . 5 ⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) | |
2 | mrsubccat.s | . . . . . 6 ⊢ 𝑆 = (mRSubst‘𝑇) | |
3 | 2 | rnfvprc 6750 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ∅) |
4 | 1, 3 | nsyl2 141 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
5 | mrsubcn.v | . . . . 5 ⊢ 𝑉 = (mVR‘𝑇) | |
6 | mrsubccat.r | . . . . 5 ⊢ 𝑅 = (mREx‘𝑇) | |
7 | 5, 6, 2 | mrsubff 33374 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
8 | ffun 6587 | . . . 4 ⊢ (𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅) → Fun 𝑆) | |
9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → Fun 𝑆) |
10 | 5, 6, 2 | mrsubrn 33375 | . . . . 5 ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) |
11 | 10 | eleq2i 2830 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
12 | 11 | biimpi 215 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) |
13 | fvelima 6817 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝐹 ∈ (𝑆 “ (𝑅 ↑m 𝑉))) → ∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹) | |
14 | 9, 12, 13 | syl2anc 583 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹) |
15 | elmapi 8595 | . . . . . . 7 ⊢ (𝑓 ∈ (𝑅 ↑m 𝑉) → 𝑓:𝑉⟶𝑅) | |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑓:𝑉⟶𝑅) |
17 | ssidd 3940 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ⊆ 𝑉) | |
18 | eldifi 4057 | . . . . . . . 8 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → 𝑋 ∈ 𝐶) | |
19 | elun1 4106 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐶 → 𝑋 ∈ (𝐶 ∪ 𝑉)) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → 𝑋 ∈ (𝐶 ∪ 𝑉)) |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → 𝑋 ∈ (𝐶 ∪ 𝑉)) |
22 | mrsubcn.c | . . . . . . 7 ⊢ 𝐶 = (mCN‘𝑇) | |
23 | 22, 5, 6, 2 | mrsubcv 33372 | . . . . . 6 ⊢ ((𝑓:𝑉⟶𝑅 ∧ 𝑉 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉)) |
24 | 16, 17, 21, 23 | syl3anc 1369 | . . . . 5 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉)) |
25 | eldifn 4058 | . . . . . . 7 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → ¬ 𝑋 ∈ 𝑉) | |
26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ¬ 𝑋 ∈ 𝑉) |
27 | 26 | iffalsed 4467 | . . . . 5 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → if(𝑋 ∈ 𝑉, (𝑓‘𝑋), 〈“𝑋”〉) = 〈“𝑋”〉) |
28 | 24, 27 | eqtrd 2778 | . . . 4 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓)‘〈“𝑋”〉) = 〈“𝑋”〉) |
29 | fveq1 6755 | . . . . 5 ⊢ ((𝑆‘𝑓) = 𝐹 → ((𝑆‘𝑓)‘〈“𝑋”〉) = (𝐹‘〈“𝑋”〉)) | |
30 | 29 | eqeq1d 2740 | . . . 4 ⊢ ((𝑆‘𝑓) = 𝐹 → (((𝑆‘𝑓)‘〈“𝑋”〉) = 〈“𝑋”〉 ↔ (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
31 | 28, 30 | syl5ibcom 244 | . . 3 ⊢ ((𝑋 ∈ (𝐶 ∖ 𝑉) ∧ 𝑓 ∈ (𝑅 ↑m 𝑉)) → ((𝑆‘𝑓) = 𝐹 → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
32 | 31 | rexlimdva 3212 | . 2 ⊢ (𝑋 ∈ (𝐶 ∖ 𝑉) → (∃𝑓 ∈ (𝑅 ↑m 𝑉)(𝑆‘𝑓) = 𝐹 → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉)) |
33 | 14, 32 | mpan9 506 | 1 ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 ifcif 4456 ran crn 5581 “ cima 5583 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ↑pm cpm 8574 〈“cs1 14228 mCNcmcn 33322 mVRcmvar 33323 mRExcmrex 33328 mRSubstcmrsub 33332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-frmd 18403 df-mrex 33348 df-mrsub 33352 |
This theorem is referenced by: elmrsubrn 33382 mrsubco 33383 mrsubvrs 33384 |
Copyright terms: Public domain | W3C validator |