| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsubf | Structured version Visualization version GIF version | ||
| Description: A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mrsubccat.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
| mrsubccat.r | ⊢ 𝑅 = (mREx‘𝑇) |
| Ref | Expression |
|---|---|
| mrsubf | ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝑅⟶𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4293 | . . . . 5 ⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) | |
| 2 | mrsubccat.s | . . . . . 6 ⊢ 𝑆 = (mRSubst‘𝑇) | |
| 3 | 2 | rnfvprc 6820 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ∅) |
| 4 | 1, 3 | nsyl2 141 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
| 5 | eqid 2729 | . . . . 5 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
| 6 | mrsubccat.r | . . . . 5 ⊢ 𝑅 = (mREx‘𝑇) | |
| 7 | 5, 6, 2 | mrsubff 35504 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆:(𝑅 ↑pm (mVR‘𝑇))⟶(𝑅 ↑m 𝑅)) |
| 8 | frn 6663 | . . . 4 ⊢ (𝑆:(𝑅 ↑pm (mVR‘𝑇))⟶(𝑅 ↑m 𝑅) → ran 𝑆 ⊆ (𝑅 ↑m 𝑅)) | |
| 9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → ran 𝑆 ⊆ (𝑅 ↑m 𝑅)) |
| 10 | id 22 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ ran 𝑆) | |
| 11 | 9, 10 | sseldd 3938 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝑅 ↑m 𝑅)) |
| 12 | elmapi 8783 | . 2 ⊢ (𝐹 ∈ (𝑅 ↑m 𝑅) → 𝐹:𝑅⟶𝑅) | |
| 13 | 11, 12 | syl 17 | 1 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝑅⟶𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 ran crn 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 ↑pm cpm 8761 mVRcmvar 35453 mRExcmrex 35458 mRSubstcmrsub 35462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-n0 12404 df-z 12491 df-uz 12755 df-fz 13430 df-fzo 13577 df-seq 13928 df-hash 14257 df-word 14440 df-concat 14497 df-s1 14522 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-0g 17364 df-gsum 17365 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-frmd 18742 df-mrex 35478 df-mrsub 35482 |
| This theorem is referenced by: elmrsubrn 35512 mrsubco 35513 mrsubvrs 35514 msubco 35523 msubvrs 35552 |
| Copyright terms: Public domain | W3C validator |