![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsub0 | Structured version Visualization version GIF version |
Description: The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mrsubccat.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
Ref | Expression |
---|---|
mrsub0 | ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4363 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) | |
2 | mrsubccat.s | . . . 4 ⊢ 𝑆 = (mRSubst‘𝑇) | |
3 | 2 | rnfvprc 6914 | . . 3 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ∅) |
4 | 1, 3 | nsyl2 141 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
5 | eqid 2740 | . . . . 5 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
6 | eqid 2740 | . . . . 5 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
7 | 5, 6, 2 | mrsubff 35480 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇))) |
8 | ffun 6750 | . . . 4 ⊢ (𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇)) → Fun 𝑆) | |
9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → Fun 𝑆) |
10 | 5, 6, 2 | mrsubrn 35481 | . . . . 5 ⊢ ran 𝑆 = (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇))) |
11 | 10 | eleq2i 2836 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) |
12 | 11 | biimpi 216 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) |
13 | fvelima 6987 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹) | |
14 | 9, 12, 13 | syl2anc 583 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹) |
15 | elmapi 8907 | . . . . . . 7 ⊢ (𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇)) | |
16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇)) |
17 | ssidd 4032 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mVR‘𝑇) ⊆ (mVR‘𝑇)) | |
18 | wrd0 14587 | . . . . . . 7 ⊢ ∅ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) | |
19 | eqid 2740 | . . . . . . . . 9 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
20 | 19, 5, 6 | mrexval 35469 | . . . . . . . 8 ⊢ (𝑇 ∈ V → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
22 | 18, 21 | eleqtrrid 2851 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ∅ ∈ (mREx‘𝑇)) |
23 | eqid 2740 | . . . . . . 7 ⊢ (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) | |
24 | 19, 5, 6, 2, 23 | mrsubval 35477 | . . . . . 6 ⊢ ((𝑓:(mVR‘𝑇)⟶(mREx‘𝑇) ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ ∅ ∈ (mREx‘𝑇)) → ((𝑆‘𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅))) |
25 | 16, 17, 22, 24 | syl3anc 1371 | . . . . 5 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅))) |
26 | co02 6291 | . . . . . . 7 ⊢ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅) = ∅ | |
27 | 26 | oveq2i 7459 | . . . . . 6 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅) |
28 | 23 | frmd0 18895 | . . . . . . 7 ⊢ ∅ = (0g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) |
29 | 28 | gsum0 18722 | . . . . . 6 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅) = ∅ |
30 | 27, 29 | eqtri 2768 | . . . . 5 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅)) = ∅ |
31 | 25, 30 | eqtrdi 2796 | . . . 4 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓)‘∅) = ∅) |
32 | fveq1 6919 | . . . . 5 ⊢ ((𝑆‘𝑓) = 𝐹 → ((𝑆‘𝑓)‘∅) = (𝐹‘∅)) | |
33 | 32 | eqeq1d 2742 | . . . 4 ⊢ ((𝑆‘𝑓) = 𝐹 → (((𝑆‘𝑓)‘∅) = ∅ ↔ (𝐹‘∅) = ∅)) |
34 | 31, 33 | syl5ibcom 245 | . . 3 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓) = 𝐹 → (𝐹‘∅) = ∅)) |
35 | 34 | rexlimdva 3161 | . 2 ⊢ (𝑇 ∈ V → (∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹 → (𝐹‘∅) = ∅)) |
36 | 4, 14, 35 | sylc 65 | 1 ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 ifcif 4548 ↦ cmpt 5249 ran crn 5701 “ cima 5703 ∘ ccom 5704 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ↑pm cpm 8885 Word cword 14562 〈“cs1 14643 Σg cgsu 17500 freeMndcfrmd 18882 mCNcmcn 35428 mVRcmvar 35429 mRExcmrex 35434 mRSubstcmrsub 35438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-gsum 17502 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-frmd 18884 df-mrex 35454 df-mrsub 35458 |
This theorem is referenced by: mrsubvrs 35490 |
Copyright terms: Public domain | W3C validator |