Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsub0 Structured version   Visualization version   GIF version

Theorem mrsub0 35583
Description: The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mrsubccat.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsub0 (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅)

Proof of Theorem mrsub0
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4289 . . 3 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
2 mrsubccat.s . . . 4 𝑆 = (mRSubst‘𝑇)
32rnfvprc 6824 . . 3 𝑇 ∈ V → ran 𝑆 = ∅)
41, 3nsyl2 141 . 2 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
5 eqid 2733 . . . . 5 (mVR‘𝑇) = (mVR‘𝑇)
6 eqid 2733 . . . . 5 (mREx‘𝑇) = (mREx‘𝑇)
75, 6, 2mrsubff 35579 . . . 4 (𝑇 ∈ V → 𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇)))
8 ffun 6661 . . . 4 (𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇)) → Fun 𝑆)
94, 7, 83syl 18 . . 3 (𝐹 ∈ ran 𝑆 → Fun 𝑆)
105, 6, 2mrsubrn 35580 . . . . 5 ran 𝑆 = (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))
1110eleq2i 2825 . . . 4 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇))))
1211biimpi 216 . . 3 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇))))
13 fvelima 6895 . . 3 ((Fun 𝑆𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆𝑓) = 𝐹)
149, 12, 13syl2anc 584 . 2 (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆𝑓) = 𝐹)
15 elmapi 8781 . . . . . . 7 (𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇))
1615adantl 481 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇))
17 ssidd 3954 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mVR‘𝑇) ⊆ (mVR‘𝑇))
18 wrd0 14450 . . . . . . 7 ∅ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))
19 eqid 2733 . . . . . . . . 9 (mCN‘𝑇) = (mCN‘𝑇)
2019, 5, 6mrexval 35568 . . . . . . . 8 (𝑇 ∈ V → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2120adantr 480 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2218, 21eleqtrrid 2840 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ∅ ∈ (mREx‘𝑇))
23 eqid 2733 . . . . . . 7 (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))
2419, 5, 6, 2, 23mrsubval 35576 . . . . . 6 ((𝑓:(mVR‘𝑇)⟶(mREx‘𝑇) ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ ∅ ∈ (mREx‘𝑇)) → ((𝑆𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)))
2516, 17, 22, 24syl3anc 1373 . . . . 5 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)))
26 co02 6215 . . . . . . 7 ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅) = ∅
2726oveq2i 7365 . . . . . 6 ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅)
2823frmd0 18772 . . . . . . 7 ∅ = (0g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
2928gsum0 18596 . . . . . 6 ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅) = ∅
3027, 29eqtri 2756 . . . . 5 ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)) = ∅
3125, 30eqtrdi 2784 . . . 4 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆𝑓)‘∅) = ∅)
32 fveq1 6829 . . . . 5 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘∅) = (𝐹‘∅))
3332eqeq1d 2735 . . . 4 ((𝑆𝑓) = 𝐹 → (((𝑆𝑓)‘∅) = ∅ ↔ (𝐹‘∅) = ∅))
3431, 33syl5ibcom 245 . . 3 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆𝑓) = 𝐹 → (𝐹‘∅) = ∅))
3534rexlimdva 3134 . 2 (𝑇 ∈ V → (∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆𝑓) = 𝐹 → (𝐹‘∅) = ∅))
364, 14, 35sylc 65 1 (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  Vcvv 3437  cun 3896  wss 3898  c0 4282  ifcif 4476  cmpt 5176  ran crn 5622  cima 5624  ccom 5625  Fun wfun 6482  wf 6484  cfv 6488  (class class class)co 7354  m cmap 8758  pm cpm 8759  Word cword 14424  ⟨“cs1 14507   Σg cgsu 17348  freeMndcfrmd 18759  mCNcmcn 35527  mVRcmvar 35528  mRExcmrex 35533  mRSubstcmrsub 35537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-word 14425  df-concat 14482  df-s1 14508  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-0g 17349  df-gsum 17350  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-frmd 18761  df-mrex 35553  df-mrsub 35557
This theorem is referenced by:  mrsubvrs  35589
  Copyright terms: Public domain W3C validator