Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsub0 | Structured version Visualization version GIF version |
Description: The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mrsubccat.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
Ref | Expression |
---|---|
mrsub0 | ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4267 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) | |
2 | mrsubccat.s | . . . 4 ⊢ 𝑆 = (mRSubst‘𝑇) | |
3 | 2 | rnfvprc 6768 | . . 3 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ∅) |
4 | 1, 3 | nsyl2 141 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
5 | eqid 2738 | . . . . 5 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
6 | eqid 2738 | . . . . 5 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
7 | 5, 6, 2 | mrsubff 33474 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇))) |
8 | ffun 6603 | . . . 4 ⊢ (𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇)) → Fun 𝑆) | |
9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → Fun 𝑆) |
10 | 5, 6, 2 | mrsubrn 33475 | . . . . 5 ⊢ ran 𝑆 = (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇))) |
11 | 10 | eleq2i 2830 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) |
12 | 11 | biimpi 215 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) |
13 | fvelima 6835 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹) | |
14 | 9, 12, 13 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹) |
15 | elmapi 8637 | . . . . . . 7 ⊢ (𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇)) | |
16 | 15 | adantl 482 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇)) |
17 | ssidd 3944 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mVR‘𝑇) ⊆ (mVR‘𝑇)) | |
18 | wrd0 14242 | . . . . . . 7 ⊢ ∅ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) | |
19 | eqid 2738 | . . . . . . . . 9 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
20 | 19, 5, 6 | mrexval 33463 | . . . . . . . 8 ⊢ (𝑇 ∈ V → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
21 | 20 | adantr 481 | . . . . . . 7 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
22 | 18, 21 | eleqtrrid 2846 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ∅ ∈ (mREx‘𝑇)) |
23 | eqid 2738 | . . . . . . 7 ⊢ (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) | |
24 | 19, 5, 6, 2, 23 | mrsubval 33471 | . . . . . 6 ⊢ ((𝑓:(mVR‘𝑇)⟶(mREx‘𝑇) ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ ∅ ∈ (mREx‘𝑇)) → ((𝑆‘𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅))) |
25 | 16, 17, 22, 24 | syl3anc 1370 | . . . . 5 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅))) |
26 | co02 6164 | . . . . . . 7 ⊢ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅) = ∅ | |
27 | 26 | oveq2i 7286 | . . . . . 6 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅) |
28 | 23 | frmd0 18499 | . . . . . . 7 ⊢ ∅ = (0g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) |
29 | 28 | gsum0 18368 | . . . . . 6 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅) = ∅ |
30 | 27, 29 | eqtri 2766 | . . . . 5 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅)) = ∅ |
31 | 25, 30 | eqtrdi 2794 | . . . 4 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓)‘∅) = ∅) |
32 | fveq1 6773 | . . . . 5 ⊢ ((𝑆‘𝑓) = 𝐹 → ((𝑆‘𝑓)‘∅) = (𝐹‘∅)) | |
33 | 32 | eqeq1d 2740 | . . . 4 ⊢ ((𝑆‘𝑓) = 𝐹 → (((𝑆‘𝑓)‘∅) = ∅ ↔ (𝐹‘∅) = ∅)) |
34 | 31, 33 | syl5ibcom 244 | . . 3 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓) = 𝐹 → (𝐹‘∅) = ∅)) |
35 | 34 | rexlimdva 3213 | . 2 ⊢ (𝑇 ∈ V → (∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹 → (𝐹‘∅) = ∅)) |
36 | 4, 14, 35 | sylc 65 | 1 ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 ifcif 4459 ↦ cmpt 5157 ran crn 5590 “ cima 5592 ∘ ccom 5593 Fun wfun 6427 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ↑pm cpm 8616 Word cword 14217 〈“cs1 14300 Σg cgsu 17151 freeMndcfrmd 18486 mCNcmcn 33422 mVRcmvar 33423 mRExcmrex 33428 mRSubstcmrsub 33432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-gsum 17153 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-frmd 18488 df-mrex 33448 df-mrsub 33452 |
This theorem is referenced by: mrsubvrs 33484 |
Copyright terms: Public domain | W3C validator |