| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsub0 | Structured version Visualization version GIF version | ||
| Description: The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mrsubccat.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
| Ref | Expression |
|---|---|
| mrsub0 | ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4290 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) | |
| 2 | mrsubccat.s | . . . 4 ⊢ 𝑆 = (mRSubst‘𝑇) | |
| 3 | 2 | rnfvprc 6816 | . . 3 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ∅) |
| 4 | 1, 3 | nsyl2 141 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
| 5 | eqid 2731 | . . . . 5 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
| 7 | 5, 6, 2 | mrsubff 35554 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇))) |
| 8 | ffun 6654 | . . . 4 ⊢ (𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇)) → Fun 𝑆) | |
| 9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → Fun 𝑆) |
| 10 | 5, 6, 2 | mrsubrn 35555 | . . . . 5 ⊢ ran 𝑆 = (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇))) |
| 11 | 10 | eleq2i 2823 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) |
| 12 | 11 | biimpi 216 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) |
| 13 | fvelima 6887 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹) | |
| 14 | 9, 12, 13 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹) |
| 15 | elmapi 8773 | . . . . . . 7 ⊢ (𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇)) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇)) |
| 17 | ssidd 3958 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mVR‘𝑇) ⊆ (mVR‘𝑇)) | |
| 18 | wrd0 14446 | . . . . . . 7 ⊢ ∅ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) | |
| 19 | eqid 2731 | . . . . . . . . 9 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
| 20 | 19, 5, 6 | mrexval 35543 | . . . . . . . 8 ⊢ (𝑇 ∈ V → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 22 | 18, 21 | eleqtrrid 2838 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ∅ ∈ (mREx‘𝑇)) |
| 23 | eqid 2731 | . . . . . . 7 ⊢ (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) | |
| 24 | 19, 5, 6, 2, 23 | mrsubval 35551 | . . . . . 6 ⊢ ((𝑓:(mVR‘𝑇)⟶(mREx‘𝑇) ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ ∅ ∈ (mREx‘𝑇)) → ((𝑆‘𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅))) |
| 25 | 16, 17, 22, 24 | syl3anc 1373 | . . . . 5 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅))) |
| 26 | co02 6208 | . . . . . . 7 ⊢ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅) = ∅ | |
| 27 | 26 | oveq2i 7357 | . . . . . 6 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅) |
| 28 | 23 | frmd0 18768 | . . . . . . 7 ⊢ ∅ = (0g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) |
| 29 | 28 | gsum0 18592 | . . . . . 6 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅) = ∅ |
| 30 | 27, 29 | eqtri 2754 | . . . . 5 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅)) = ∅ |
| 31 | 25, 30 | eqtrdi 2782 | . . . 4 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓)‘∅) = ∅) |
| 32 | fveq1 6821 | . . . . 5 ⊢ ((𝑆‘𝑓) = 𝐹 → ((𝑆‘𝑓)‘∅) = (𝐹‘∅)) | |
| 33 | 32 | eqeq1d 2733 | . . . 4 ⊢ ((𝑆‘𝑓) = 𝐹 → (((𝑆‘𝑓)‘∅) = ∅ ↔ (𝐹‘∅) = ∅)) |
| 34 | 31, 33 | syl5ibcom 245 | . . 3 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓) = 𝐹 → (𝐹‘∅) = ∅)) |
| 35 | 34 | rexlimdva 3133 | . 2 ⊢ (𝑇 ∈ V → (∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹 → (𝐹‘∅) = ∅)) |
| 36 | 4, 14, 35 | sylc 65 | 1 ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ∪ cun 3900 ⊆ wss 3902 ∅c0 4283 ifcif 4475 ↦ cmpt 5172 ran crn 5617 “ cima 5619 ∘ ccom 5620 Fun wfun 6475 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ↑pm cpm 8751 Word cword 14420 〈“cs1 14503 Σg cgsu 17344 freeMndcfrmd 18755 mCNcmcn 35502 mVRcmvar 35503 mRExcmrex 35508 mRSubstcmrsub 35512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-frmd 18757 df-mrex 35528 df-mrsub 35532 |
| This theorem is referenced by: mrsubvrs 35564 |
| Copyright terms: Public domain | W3C validator |