Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsub0 Structured version   Visualization version   GIF version

Theorem mrsub0 35501
Description: The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mrsubccat.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsub0 (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅)

Proof of Theorem mrsub0
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4346 . . 3 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
2 mrsubccat.s . . . 4 𝑆 = (mRSubst‘𝑇)
32rnfvprc 6901 . . 3 𝑇 ∈ V → ran 𝑆 = ∅)
41, 3nsyl2 141 . 2 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
5 eqid 2735 . . . . 5 (mVR‘𝑇) = (mVR‘𝑇)
6 eqid 2735 . . . . 5 (mREx‘𝑇) = (mREx‘𝑇)
75, 6, 2mrsubff 35497 . . . 4 (𝑇 ∈ V → 𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇)))
8 ffun 6740 . . . 4 (𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇)) → Fun 𝑆)
94, 7, 83syl 18 . . 3 (𝐹 ∈ ran 𝑆 → Fun 𝑆)
105, 6, 2mrsubrn 35498 . . . . 5 ran 𝑆 = (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))
1110eleq2i 2831 . . . 4 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇))))
1211biimpi 216 . . 3 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇))))
13 fvelima 6974 . . 3 ((Fun 𝑆𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆𝑓) = 𝐹)
149, 12, 13syl2anc 584 . 2 (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆𝑓) = 𝐹)
15 elmapi 8888 . . . . . . 7 (𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇))
1615adantl 481 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇))
17 ssidd 4019 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mVR‘𝑇) ⊆ (mVR‘𝑇))
18 wrd0 14574 . . . . . . 7 ∅ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))
19 eqid 2735 . . . . . . . . 9 (mCN‘𝑇) = (mCN‘𝑇)
2019, 5, 6mrexval 35486 . . . . . . . 8 (𝑇 ∈ V → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2120adantr 480 . . . . . . 7 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2218, 21eleqtrrid 2846 . . . . . 6 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ∅ ∈ (mREx‘𝑇))
23 eqid 2735 . . . . . . 7 (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))
2419, 5, 6, 2, 23mrsubval 35494 . . . . . 6 ((𝑓:(mVR‘𝑇)⟶(mREx‘𝑇) ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ ∅ ∈ (mREx‘𝑇)) → ((𝑆𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)))
2516, 17, 22, 24syl3anc 1370 . . . . 5 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)))
26 co02 6282 . . . . . . 7 ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅) = ∅
2726oveq2i 7442 . . . . . 6 ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅)
2823frmd0 18886 . . . . . . 7 ∅ = (0g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
2928gsum0 18710 . . . . . 6 ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅) = ∅
3027, 29eqtri 2763 . . . . 5 ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ ∅)) = ∅
3125, 30eqtrdi 2791 . . . 4 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆𝑓)‘∅) = ∅)
32 fveq1 6906 . . . . 5 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘∅) = (𝐹‘∅))
3332eqeq1d 2737 . . . 4 ((𝑆𝑓) = 𝐹 → (((𝑆𝑓)‘∅) = ∅ ↔ (𝐹‘∅) = ∅))
3431, 33syl5ibcom 245 . . 3 ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆𝑓) = 𝐹 → (𝐹‘∅) = ∅))
3534rexlimdva 3153 . 2 (𝑇 ∈ V → (∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆𝑓) = 𝐹 → (𝐹‘∅) = ∅))
364, 14, 35sylc 65 1 (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  cun 3961  wss 3963  c0 4339  ifcif 4531  cmpt 5231  ran crn 5690  cima 5692  ccom 5693  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  pm cpm 8866  Word cword 14549  ⟨“cs1 14630   Σg cgsu 17487  freeMndcfrmd 18873  mCNcmcn 35445  mVRcmvar 35446  mRExcmrex 35451  mRSubstcmrsub 35455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-frmd 18875  df-mrex 35471  df-mrsub 35475
This theorem is referenced by:  mrsubvrs  35507
  Copyright terms: Public domain W3C validator