| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsub0 | Structured version Visualization version GIF version | ||
| Description: The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mrsubccat.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
| Ref | Expression |
|---|---|
| mrsub0 | ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4293 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) | |
| 2 | mrsubccat.s | . . . 4 ⊢ 𝑆 = (mRSubst‘𝑇) | |
| 3 | 2 | rnfvprc 6820 | . . 3 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ∅) |
| 4 | 1, 3 | nsyl2 141 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
| 5 | eqid 2729 | . . . . 5 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
| 7 | 5, 6, 2 | mrsubff 35487 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇))) |
| 8 | ffun 6659 | . . . 4 ⊢ (𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇)) → Fun 𝑆) | |
| 9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → Fun 𝑆) |
| 10 | 5, 6, 2 | mrsubrn 35488 | . . . . 5 ⊢ ran 𝑆 = (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇))) |
| 11 | 10 | eleq2i 2820 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) |
| 12 | 11 | biimpi 216 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) |
| 13 | fvelima 6892 | . . 3 ⊢ ((Fun 𝑆 ∧ 𝐹 ∈ (𝑆 “ ((mREx‘𝑇) ↑m (mVR‘𝑇)))) → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹) | |
| 14 | 9, 12, 13 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹) |
| 15 | elmapi 8783 | . . . . . . 7 ⊢ (𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇)) | |
| 16 | 15 | adantl 481 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶(mREx‘𝑇)) |
| 17 | ssidd 3961 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mVR‘𝑇) ⊆ (mVR‘𝑇)) | |
| 18 | wrd0 14464 | . . . . . . 7 ⊢ ∅ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) | |
| 19 | eqid 2729 | . . . . . . . . 9 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
| 20 | 19, 5, 6 | mrexval 35476 | . . . . . . . 8 ⊢ (𝑇 ∈ V → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 21 | 20 | adantr 480 | . . . . . . 7 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → (mREx‘𝑇) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 22 | 18, 21 | eleqtrrid 2835 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ∅ ∈ (mREx‘𝑇)) |
| 23 | eqid 2729 | . . . . . . 7 ⊢ (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) | |
| 24 | 19, 5, 6, 2, 23 | mrsubval 35484 | . . . . . 6 ⊢ ((𝑓:(mVR‘𝑇)⟶(mREx‘𝑇) ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ ∅ ∈ (mREx‘𝑇)) → ((𝑆‘𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅))) |
| 25 | 16, 17, 22, 24 | syl3anc 1373 | . . . . 5 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓)‘∅) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅))) |
| 26 | co02 6213 | . . . . . . 7 ⊢ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅) = ∅ | |
| 27 | 26 | oveq2i 7364 | . . . . . 6 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅) |
| 28 | 23 | frmd0 18752 | . . . . . . 7 ⊢ ∅ = (0g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) |
| 29 | 28 | gsum0 18576 | . . . . . 6 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ∅) = ∅ |
| 30 | 27, 29 | eqtri 2752 | . . . . 5 ⊢ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ ∅)) = ∅ |
| 31 | 25, 30 | eqtrdi 2780 | . . . 4 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓)‘∅) = ∅) |
| 32 | fveq1 6825 | . . . . 5 ⊢ ((𝑆‘𝑓) = 𝐹 → ((𝑆‘𝑓)‘∅) = (𝐹‘∅)) | |
| 33 | 32 | eqeq1d 2731 | . . . 4 ⊢ ((𝑆‘𝑓) = 𝐹 → (((𝑆‘𝑓)‘∅) = ∅ ↔ (𝐹‘∅) = ∅)) |
| 34 | 31, 33 | syl5ibcom 245 | . . 3 ⊢ ((𝑇 ∈ V ∧ 𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))) → ((𝑆‘𝑓) = 𝐹 → (𝐹‘∅) = ∅)) |
| 35 | 34 | rexlimdva 3130 | . 2 ⊢ (𝑇 ∈ V → (∃𝑓 ∈ ((mREx‘𝑇) ↑m (mVR‘𝑇))(𝑆‘𝑓) = 𝐹 → (𝐹‘∅) = ∅)) |
| 36 | 4, 14, 35 | sylc 65 | 1 ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 ∪ cun 3903 ⊆ wss 3905 ∅c0 4286 ifcif 4478 ↦ cmpt 5176 ran crn 5624 “ cima 5626 ∘ ccom 5627 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 ↑pm cpm 8761 Word cword 14438 〈“cs1 14520 Σg cgsu 17362 freeMndcfrmd 18739 mCNcmcn 35435 mVRcmvar 35436 mRExcmrex 35441 mRSubstcmrsub 35445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-gsum 17364 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-frmd 18741 df-mrex 35461 df-mrsub 35465 |
| This theorem is referenced by: mrsubvrs 35497 |
| Copyright terms: Public domain | W3C validator |