Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > msubf | Structured version Visualization version GIF version |
Description: A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
msubco.s | ⊢ 𝑆 = (mSubst‘𝑇) |
msubf.e | ⊢ 𝐸 = (mEx‘𝑇) |
Ref | Expression |
---|---|
msubf | ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝐸⟶𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4234 | . . . . 5 ⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) | |
2 | msubco.s | . . . . . 6 ⊢ 𝑆 = (mSubst‘𝑇) | |
3 | 2 | rnfvprc 6656 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ∅) |
4 | 1, 3 | nsyl2 143 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
5 | eqid 2758 | . . . . 5 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
6 | eqid 2758 | . . . . 5 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
7 | msubf.e | . . . . 5 ⊢ 𝐸 = (mEx‘𝑇) | |
8 | 5, 6, 2, 7 | msubff 33012 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶(𝐸 ↑m 𝐸)) |
9 | frn 6508 | . . . 4 ⊢ (𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶(𝐸 ↑m 𝐸) → ran 𝑆 ⊆ (𝐸 ↑m 𝐸)) | |
10 | 4, 8, 9 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → ran 𝑆 ⊆ (𝐸 ↑m 𝐸)) |
11 | id 22 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ ran 𝑆) | |
12 | 10, 11 | sseldd 3895 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝐸 ↑m 𝐸)) |
13 | elmapi 8443 | . 2 ⊢ (𝐹 ∈ (𝐸 ↑m 𝐸) → 𝐹:𝐸⟶𝐸) | |
14 | 12, 13 | syl 17 | 1 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝐸⟶𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 ∅c0 4227 ran crn 5528 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 ↑m cmap 8421 ↑pm cpm 8422 mVRcmvar 32943 mRExcmrex 32948 mExcmex 32949 mSubstcmsub 32953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-pm 8424 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-fzo 13088 df-seq 13424 df-hash 13746 df-word 13919 df-concat 13975 df-s1 14002 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-0g 16778 df-gsum 16779 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-submnd 18028 df-frmd 18085 df-mrex 32968 df-mex 32969 df-mrsub 32972 df-msub 32973 |
This theorem is referenced by: mclsssvlem 33044 mclsax 33051 mclsppslem 33065 mclspps 33066 |
Copyright terms: Public domain | W3C validator |