| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msubf | Structured version Visualization version GIF version | ||
| Description: A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| msubco.s | ⊢ 𝑆 = (mSubst‘𝑇) |
| msubf.e | ⊢ 𝐸 = (mEx‘𝑇) |
| Ref | Expression |
|---|---|
| msubf | ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝐸⟶𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4305 | . . . . 5 ⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) | |
| 2 | msubco.s | . . . . . 6 ⊢ 𝑆 = (mSubst‘𝑇) | |
| 3 | 2 | rnfvprc 6854 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ∅) |
| 4 | 1, 3 | nsyl2 141 | . . . 4 ⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
| 5 | eqid 2730 | . . . . 5 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
| 6 | eqid 2730 | . . . . 5 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
| 7 | msubf.e | . . . . 5 ⊢ 𝐸 = (mEx‘𝑇) | |
| 8 | 5, 6, 2, 7 | msubff 35517 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶(𝐸 ↑m 𝐸)) |
| 9 | frn 6697 | . . . 4 ⊢ (𝑆:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶(𝐸 ↑m 𝐸) → ran 𝑆 ⊆ (𝐸 ↑m 𝐸)) | |
| 10 | 4, 8, 9 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → ran 𝑆 ⊆ (𝐸 ↑m 𝐸)) |
| 11 | id 22 | . . 3 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ ran 𝑆) | |
| 12 | 10, 11 | sseldd 3949 | . 2 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝐸 ↑m 𝐸)) |
| 13 | elmapi 8824 | . 2 ⊢ (𝐹 ∈ (𝐸 ↑m 𝐸) → 𝐹:𝐸⟶𝐸) | |
| 14 | 12, 13 | syl 17 | 1 ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝐸⟶𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 ∅c0 4298 ran crn 5641 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 ↑pm cpm 8802 mVRcmvar 35448 mRExcmrex 35453 mExcmex 35454 mSubstcmsub 35458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-fzo 13622 df-seq 13973 df-hash 14302 df-word 14485 df-concat 14542 df-s1 14567 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-0g 17410 df-gsum 17411 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-frmd 18782 df-mrex 35473 df-mex 35474 df-mrsub 35477 df-msub 35478 |
| This theorem is referenced by: mclsssvlem 35549 mclsax 35556 mclsppslem 35570 mclspps 35571 |
| Copyright terms: Public domain | W3C validator |