Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubccat Structured version   Visualization version   GIF version

Theorem mrsubccat 35545
Description: Substitution distributes over concatenation. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubccat.s 𝑆 = (mRSubst‘𝑇)
mrsubccat.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mrsubccat ((𝐹 ∈ ran 𝑆𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))

Proof of Theorem mrsubccat
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4320 . . . . . 6 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
2 mrsubccat.s . . . . . . 7 𝑆 = (mRSubst‘𝑇)
32rnfvprc 6875 . . . . . 6 𝑇 ∈ V → ran 𝑆 = ∅)
41, 3nsyl2 141 . . . . 5 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
5 eqid 2736 . . . . . 6 (mVR‘𝑇) = (mVR‘𝑇)
6 mrsubccat.r . . . . . 6 𝑅 = (mREx‘𝑇)
75, 6, 2mrsubff 35539 . . . . 5 (𝑇 ∈ V → 𝑆:(𝑅pm (mVR‘𝑇))⟶(𝑅m 𝑅))
8 ffun 6714 . . . . 5 (𝑆:(𝑅pm (mVR‘𝑇))⟶(𝑅m 𝑅) → Fun 𝑆)
94, 7, 83syl 18 . . . 4 (𝐹 ∈ ran 𝑆 → Fun 𝑆)
105, 6, 2mrsubrn 35540 . . . . . 6 ran 𝑆 = (𝑆 “ (𝑅m (mVR‘𝑇)))
1110eleq2i 2827 . . . . 5 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ (𝑅m (mVR‘𝑇))))
1211biimpi 216 . . . 4 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ (𝑅m (mVR‘𝑇))))
13 fvelima 6949 . . . 4 ((Fun 𝑆𝐹 ∈ (𝑆 “ (𝑅m (mVR‘𝑇)))) → ∃𝑓 ∈ (𝑅m (mVR‘𝑇))(𝑆𝑓) = 𝐹)
149, 12, 13syl2anc 584 . . 3 (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ (𝑅m (mVR‘𝑇))(𝑆𝑓) = 𝐹)
15 simprl 770 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑋𝑅)
16 elfvex 6919 . . . . . . . . . . . . . 14 (𝑋 ∈ (mREx‘𝑇) → 𝑇 ∈ V)
1716, 6eleq2s 2853 . . . . . . . . . . . . 13 (𝑋𝑅𝑇 ∈ V)
18 eqid 2736 . . . . . . . . . . . . . 14 (mCN‘𝑇) = (mCN‘𝑇)
1918, 5, 6mrexval 35528 . . . . . . . . . . . . 13 (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2015, 17, 193syl 18 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2115, 20eleqtrd 2837 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
22 simprr 772 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑌𝑅)
2322, 20eleqtrd 2837 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
24 elmapi 8868 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (𝑅m (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶𝑅)
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑓:(mVR‘𝑇)⟶𝑅)
2625adantr 480 . . . . . . . . . . . . . . 15 (((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶𝑅)
2726ffvelcdmda 7079 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → (𝑓𝑣) ∈ 𝑅)
2820ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2927, 28eleqtrd 2837 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → (𝑓𝑣) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
30 simplr 768 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ ¬ 𝑣 ∈ (mVR‘𝑇)) → 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3130s1cld 14626 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ ¬ 𝑣 ∈ (mVR‘𝑇)) → ⟨“𝑣”⟩ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3229, 31ifclda 4541 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) → if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3332fmpttd 7110 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
34 ccatco 14859 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌)) = (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
3521, 23, 33, 34syl3anc 1373 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌)) = (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
3635oveq2d 7426 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
37 fvex 6894 . . . . . . . . . . . 12 (mCN‘𝑇) ∈ V
38 fvex 6894 . . . . . . . . . . . 12 (mVR‘𝑇) ∈ V
3937, 38unex 7743 . . . . . . . . . . 11 ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V
40 eqid 2736 . . . . . . . . . . . 12 (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))
4140frmdmnd 18842 . . . . . . . . . . 11 (((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V → (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd)
4239, 41mp1i 13 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd)
43 wrdco 14855 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4421, 33, 43syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
45 wrdco 14855 . . . . . . . . . . 11 ((𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4623, 33, 45syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
47 eqid 2736 . . . . . . . . . . . . . 14 (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
4840, 47frmdbas 18835 . . . . . . . . . . . . 13 (((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V → (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4939, 48ax-mp 5 . . . . . . . . . . . 12 (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))
5049eqcomi 2745 . . . . . . . . . . 11 Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
51 eqid 2736 . . . . . . . . . . 11 (+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = (+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
5250, 51gsumccat 18824 . . . . . . . . . 10 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
5342, 44, 46, 52syl3anc 1373 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
5450gsumwcl 18822 . . . . . . . . . . 11 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5542, 44, 54syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5650gsumwcl 18822 . . . . . . . . . . 11 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5742, 46, 56syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5840, 50, 51frmdadd 18838 . . . . . . . . . 10 ((((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
5955, 57, 58syl2anc 584 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
6036, 53, 593eqtrd 2775 . . . . . . . 8 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
61 ssidd 3987 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (mVR‘𝑇) ⊆ (mVR‘𝑇))
62 ccatcl 14597 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (𝑋 ++ 𝑌) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
6321, 23, 62syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑋 ++ 𝑌) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
6463, 20eleqtrrd 2838 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑋 ++ 𝑌) ∈ 𝑅)
6518, 5, 6, 2, 40mrsubval 35536 . . . . . . . . 9 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ (𝑋 ++ 𝑌) ∈ 𝑅) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))))
6625, 61, 64, 65syl3anc 1373 . . . . . . . 8 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))))
6718, 5, 6, 2, 40mrsubval 35536 . . . . . . . . . 10 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ 𝑋𝑅) → ((𝑆𝑓)‘𝑋) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
6825, 61, 15, 67syl3anc 1373 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘𝑋) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
6918, 5, 6, 2, 40mrsubval 35536 . . . . . . . . . 10 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ 𝑌𝑅) → ((𝑆𝑓)‘𝑌) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
7025, 61, 22, 69syl3anc 1373 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘𝑌) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
7168, 70oveq12d 7428 . . . . . . . 8 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
7260, 66, 713eqtr4d 2781 . . . . . . 7 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)))
73 fveq1 6880 . . . . . . . 8 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (𝐹‘(𝑋 ++ 𝑌)))
74 fveq1 6880 . . . . . . . . 9 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘𝑋) = (𝐹𝑋))
75 fveq1 6880 . . . . . . . . 9 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘𝑌) = (𝐹𝑌))
7674, 75oveq12d 7428 . . . . . . . 8 ((𝑆𝑓) = 𝐹 → (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))
7773, 76eqeq12d 2752 . . . . . . 7 ((𝑆𝑓) = 𝐹 → (((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) ↔ (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
7872, 77syl5ibcom 245 . . . . . 6 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓) = 𝐹 → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
7978ex 412 . . . . 5 (𝑓 ∈ (𝑅m (mVR‘𝑇)) → ((𝑋𝑅𝑌𝑅) → ((𝑆𝑓) = 𝐹 → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))))
8079com23 86 . . . 4 (𝑓 ∈ (𝑅m (mVR‘𝑇)) → ((𝑆𝑓) = 𝐹 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))))
8180rexlimiv 3135 . . 3 (∃𝑓 ∈ (𝑅m (mVR‘𝑇))(𝑆𝑓) = 𝐹 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
8214, 81syl 17 . 2 (𝐹 ∈ ran 𝑆 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
83823impib 1116 1 ((𝐹 ∈ ran 𝑆𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3061  Vcvv 3464  cun 3929  wss 3931  c0 4313  ifcif 4505  cmpt 5206  ran crn 5660  cima 5662  ccom 5663  Fun wfun 6530  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  pm cpm 8846  Word cword 14536   ++ cconcat 14593  ⟨“cs1 14618  Basecbs 17233  +gcplusg 17276   Σg cgsu 17459  Mndcmnd 18717  freeMndcfrmd 18830  mCNcmcn 35487  mVRcmvar 35488  mRExcmrex 35493  mRSubstcmrsub 35497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-frmd 18832  df-mrex 35513  df-mrsub 35517
This theorem is referenced by:  elmrsubrn  35547  mrsubco  35548  mrsubvrs  35549
  Copyright terms: Public domain W3C validator