Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubccat Structured version   Visualization version   GIF version

Theorem mrsubccat 33480
Description: Substitution distributes over concatenation. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubccat.s 𝑆 = (mRSubst‘𝑇)
mrsubccat.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mrsubccat ((𝐹 ∈ ran 𝑆𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))

Proof of Theorem mrsubccat
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4267 . . . . . 6 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
2 mrsubccat.s . . . . . . 7 𝑆 = (mRSubst‘𝑇)
32rnfvprc 6768 . . . . . 6 𝑇 ∈ V → ran 𝑆 = ∅)
41, 3nsyl2 141 . . . . 5 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
5 eqid 2738 . . . . . 6 (mVR‘𝑇) = (mVR‘𝑇)
6 mrsubccat.r . . . . . 6 𝑅 = (mREx‘𝑇)
75, 6, 2mrsubff 33474 . . . . 5 (𝑇 ∈ V → 𝑆:(𝑅pm (mVR‘𝑇))⟶(𝑅m 𝑅))
8 ffun 6603 . . . . 5 (𝑆:(𝑅pm (mVR‘𝑇))⟶(𝑅m 𝑅) → Fun 𝑆)
94, 7, 83syl 18 . . . 4 (𝐹 ∈ ran 𝑆 → Fun 𝑆)
105, 6, 2mrsubrn 33475 . . . . . 6 ran 𝑆 = (𝑆 “ (𝑅m (mVR‘𝑇)))
1110eleq2i 2830 . . . . 5 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ (𝑅m (mVR‘𝑇))))
1211biimpi 215 . . . 4 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ (𝑅m (mVR‘𝑇))))
13 fvelima 6835 . . . 4 ((Fun 𝑆𝐹 ∈ (𝑆 “ (𝑅m (mVR‘𝑇)))) → ∃𝑓 ∈ (𝑅m (mVR‘𝑇))(𝑆𝑓) = 𝐹)
149, 12, 13syl2anc 584 . . 3 (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ (𝑅m (mVR‘𝑇))(𝑆𝑓) = 𝐹)
15 simprl 768 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑋𝑅)
16 elfvex 6807 . . . . . . . . . . . . . 14 (𝑋 ∈ (mREx‘𝑇) → 𝑇 ∈ V)
1716, 6eleq2s 2857 . . . . . . . . . . . . 13 (𝑋𝑅𝑇 ∈ V)
18 eqid 2738 . . . . . . . . . . . . . 14 (mCN‘𝑇) = (mCN‘𝑇)
1918, 5, 6mrexval 33463 . . . . . . . . . . . . 13 (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2015, 17, 193syl 18 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2115, 20eleqtrd 2841 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
22 simprr 770 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑌𝑅)
2322, 20eleqtrd 2841 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
24 elmapi 8637 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (𝑅m (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶𝑅)
2524adantr 481 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑓:(mVR‘𝑇)⟶𝑅)
2625adantr 481 . . . . . . . . . . . . . . 15 (((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶𝑅)
2726ffvelrnda 6961 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → (𝑓𝑣) ∈ 𝑅)
2820ad2antrr 723 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2927, 28eleqtrd 2841 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → (𝑓𝑣) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
30 simplr 766 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ ¬ 𝑣 ∈ (mVR‘𝑇)) → 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3130s1cld 14308 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ ¬ 𝑣 ∈ (mVR‘𝑇)) → ⟨“𝑣”⟩ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3229, 31ifclda 4494 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) → if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3332fmpttd 6989 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
34 ccatco 14548 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌)) = (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
3521, 23, 33, 34syl3anc 1370 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌)) = (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
3635oveq2d 7291 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
37 fvex 6787 . . . . . . . . . . . 12 (mCN‘𝑇) ∈ V
38 fvex 6787 . . . . . . . . . . . 12 (mVR‘𝑇) ∈ V
3937, 38unex 7596 . . . . . . . . . . 11 ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V
40 eqid 2738 . . . . . . . . . . . 12 (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))
4140frmdmnd 18498 . . . . . . . . . . 11 (((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V → (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd)
4239, 41mp1i 13 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd)
43 wrdco 14544 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4421, 33, 43syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
45 wrdco 14544 . . . . . . . . . . 11 ((𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4623, 33, 45syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
47 eqid 2738 . . . . . . . . . . . . . 14 (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
4840, 47frmdbas 18491 . . . . . . . . . . . . 13 (((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V → (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4939, 48ax-mp 5 . . . . . . . . . . . 12 (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))
5049eqcomi 2747 . . . . . . . . . . 11 Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
51 eqid 2738 . . . . . . . . . . 11 (+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = (+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
5250, 51gsumccat 18480 . . . . . . . . . 10 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
5342, 44, 46, 52syl3anc 1370 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
5450gsumwcl 18477 . . . . . . . . . . 11 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5542, 44, 54syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5650gsumwcl 18477 . . . . . . . . . . 11 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5742, 46, 56syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5840, 50, 51frmdadd 18494 . . . . . . . . . 10 ((((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
5955, 57, 58syl2anc 584 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
6036, 53, 593eqtrd 2782 . . . . . . . 8 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
61 ssidd 3944 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (mVR‘𝑇) ⊆ (mVR‘𝑇))
62 ccatcl 14277 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (𝑋 ++ 𝑌) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
6321, 23, 62syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑋 ++ 𝑌) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
6463, 20eleqtrrd 2842 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑋 ++ 𝑌) ∈ 𝑅)
6518, 5, 6, 2, 40mrsubval 33471 . . . . . . . . 9 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ (𝑋 ++ 𝑌) ∈ 𝑅) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))))
6625, 61, 64, 65syl3anc 1370 . . . . . . . 8 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))))
6718, 5, 6, 2, 40mrsubval 33471 . . . . . . . . . 10 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ 𝑋𝑅) → ((𝑆𝑓)‘𝑋) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
6825, 61, 15, 67syl3anc 1370 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘𝑋) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
6918, 5, 6, 2, 40mrsubval 33471 . . . . . . . . . 10 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ 𝑌𝑅) → ((𝑆𝑓)‘𝑌) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
7025, 61, 22, 69syl3anc 1370 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘𝑌) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
7168, 70oveq12d 7293 . . . . . . . 8 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
7260, 66, 713eqtr4d 2788 . . . . . . 7 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)))
73 fveq1 6773 . . . . . . . 8 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (𝐹‘(𝑋 ++ 𝑌)))
74 fveq1 6773 . . . . . . . . 9 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘𝑋) = (𝐹𝑋))
75 fveq1 6773 . . . . . . . . 9 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘𝑌) = (𝐹𝑌))
7674, 75oveq12d 7293 . . . . . . . 8 ((𝑆𝑓) = 𝐹 → (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))
7773, 76eqeq12d 2754 . . . . . . 7 ((𝑆𝑓) = 𝐹 → (((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) ↔ (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
7872, 77syl5ibcom 244 . . . . . 6 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓) = 𝐹 → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
7978ex 413 . . . . 5 (𝑓 ∈ (𝑅m (mVR‘𝑇)) → ((𝑋𝑅𝑌𝑅) → ((𝑆𝑓) = 𝐹 → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))))
8079com23 86 . . . 4 (𝑓 ∈ (𝑅m (mVR‘𝑇)) → ((𝑆𝑓) = 𝐹 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))))
8180rexlimiv 3209 . . 3 (∃𝑓 ∈ (𝑅m (mVR‘𝑇))(𝑆𝑓) = 𝐹 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
8214, 81syl 17 . 2 (𝐹 ∈ ran 𝑆 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
83823impib 1115 1 ((𝐹 ∈ ran 𝑆𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  cun 3885  wss 3887  c0 4256  ifcif 4459  cmpt 5157  ran crn 5590  cima 5592  ccom 5593  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  pm cpm 8616  Word cword 14217   ++ cconcat 14273  ⟨“cs1 14300  Basecbs 16912  +gcplusg 16962   Σg cgsu 17151  Mndcmnd 18385  freeMndcfrmd 18486  mCNcmcn 33422  mVRcmvar 33423  mRExcmrex 33428  mRSubstcmrsub 33432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-frmd 18488  df-mrex 33448  df-mrsub 33452
This theorem is referenced by:  elmrsubrn  33482  mrsubco  33483  mrsubvrs  33484
  Copyright terms: Public domain W3C validator