Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubccat Structured version   Visualization version   GIF version

Theorem mrsubccat 35461
Description: Substitution distributes over concatenation. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubccat.s 𝑆 = (mRSubst‘𝑇)
mrsubccat.r 𝑅 = (mREx‘𝑇)
Assertion
Ref Expression
mrsubccat ((𝐹 ∈ ran 𝑆𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))

Proof of Theorem mrsubccat
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 4313 . . . . . 6 (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅)
2 mrsubccat.s . . . . . . 7 𝑆 = (mRSubst‘𝑇)
32rnfvprc 6866 . . . . . 6 𝑇 ∈ V → ran 𝑆 = ∅)
41, 3nsyl2 141 . . . . 5 (𝐹 ∈ ran 𝑆𝑇 ∈ V)
5 eqid 2734 . . . . . 6 (mVR‘𝑇) = (mVR‘𝑇)
6 mrsubccat.r . . . . . 6 𝑅 = (mREx‘𝑇)
75, 6, 2mrsubff 35455 . . . . 5 (𝑇 ∈ V → 𝑆:(𝑅pm (mVR‘𝑇))⟶(𝑅m 𝑅))
8 ffun 6705 . . . . 5 (𝑆:(𝑅pm (mVR‘𝑇))⟶(𝑅m 𝑅) → Fun 𝑆)
94, 7, 83syl 18 . . . 4 (𝐹 ∈ ran 𝑆 → Fun 𝑆)
105, 6, 2mrsubrn 35456 . . . . . 6 ran 𝑆 = (𝑆 “ (𝑅m (mVR‘𝑇)))
1110eleq2i 2825 . . . . 5 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ (𝑅m (mVR‘𝑇))))
1211biimpi 216 . . . 4 (𝐹 ∈ ran 𝑆𝐹 ∈ (𝑆 “ (𝑅m (mVR‘𝑇))))
13 fvelima 6940 . . . 4 ((Fun 𝑆𝐹 ∈ (𝑆 “ (𝑅m (mVR‘𝑇)))) → ∃𝑓 ∈ (𝑅m (mVR‘𝑇))(𝑆𝑓) = 𝐹)
149, 12, 13syl2anc 584 . . 3 (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ (𝑅m (mVR‘𝑇))(𝑆𝑓) = 𝐹)
15 simprl 770 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑋𝑅)
16 elfvex 6910 . . . . . . . . . . . . . 14 (𝑋 ∈ (mREx‘𝑇) → 𝑇 ∈ V)
1716, 6eleq2s 2851 . . . . . . . . . . . . 13 (𝑋𝑅𝑇 ∈ V)
18 eqid 2734 . . . . . . . . . . . . . 14 (mCN‘𝑇) = (mCN‘𝑇)
1918, 5, 6mrexval 35444 . . . . . . . . . . . . 13 (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2015, 17, 193syl 18 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2115, 20eleqtrd 2835 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
22 simprr 772 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑌𝑅)
2322, 20eleqtrd 2835 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
24 elmapi 8857 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ (𝑅m (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶𝑅)
2524adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → 𝑓:(mVR‘𝑇)⟶𝑅)
2625adantr 480 . . . . . . . . . . . . . . 15 (((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶𝑅)
2726ffvelcdmda 7070 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → (𝑓𝑣) ∈ 𝑅)
2820ad2antrr 726 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
2927, 28eleqtrd 2835 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → (𝑓𝑣) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
30 simplr 768 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ ¬ 𝑣 ∈ (mVR‘𝑇)) → 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3130s1cld 14608 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ ¬ 𝑣 ∈ (mVR‘𝑇)) → ⟨“𝑣”⟩ ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3229, 31ifclda 4534 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) → if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
3332fmpttd 7101 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
34 ccatco 14841 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌)) = (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
3521, 23, 33, 34syl3anc 1372 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌)) = (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
3635oveq2d 7415 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
37 fvex 6885 . . . . . . . . . . . 12 (mCN‘𝑇) ∈ V
38 fvex 6885 . . . . . . . . . . . 12 (mVR‘𝑇) ∈ V
3937, 38unex 7732 . . . . . . . . . . 11 ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V
40 eqid 2734 . . . . . . . . . . . 12 (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))
4140frmdmnd 18822 . . . . . . . . . . 11 (((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V → (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd)
4239, 41mp1i 13 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd)
43 wrdco 14837 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4421, 33, 43syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
45 wrdco 14837 . . . . . . . . . . 11 ((𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4623, 33, 45syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
47 eqid 2734 . . . . . . . . . . . . . 14 (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
4840, 47frmdbas 18815 . . . . . . . . . . . . 13 (((mCN‘𝑇) ∪ (mVR‘𝑇)) ∈ V → (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
4939, 48ax-mp 5 . . . . . . . . . . . 12 (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))
5049eqcomi 2743 . . . . . . . . . . 11 Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
51 eqid 2734 . . . . . . . . . . 11 (+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = (+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))
5250, 51gsumccat 18804 . . . . . . . . . 10 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
5342, 44, 46, 52syl3anc 1372 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
5450gsumwcl 18802 . . . . . . . . . . 11 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5542, 44, 54syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5650gsumwcl 18802 . . . . . . . . . . 11 (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5742, 46, 56syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
5840, 50, 51frmdadd 18818 . . . . . . . . . 10 ((((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
5955, 57, 58syl2anc 584 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
6036, 53, 593eqtrd 2773 . . . . . . . 8 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
61 ssidd 3980 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (mVR‘𝑇) ⊆ (mVR‘𝑇))
62 ccatcl 14579 . . . . . . . . . . 11 ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (𝑋 ++ 𝑌) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
6321, 23, 62syl2anc 584 . . . . . . . . . 10 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑋 ++ 𝑌) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)))
6463, 20eleqtrrd 2836 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (𝑋 ++ 𝑌) ∈ 𝑅)
6518, 5, 6, 2, 40mrsubval 35452 . . . . . . . . 9 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ (𝑋 ++ 𝑌) ∈ 𝑅) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))))
6625, 61, 64, 65syl3anc 1372 . . . . . . . 8 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ (𝑋 ++ 𝑌))))
6718, 5, 6, 2, 40mrsubval 35452 . . . . . . . . . 10 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ 𝑋𝑅) → ((𝑆𝑓)‘𝑋) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
6825, 61, 15, 67syl3anc 1372 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘𝑋) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
6918, 5, 6, 2, 40mrsubval 35452 . . . . . . . . . 10 ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ 𝑌𝑅) → ((𝑆𝑓)‘𝑌) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
7025, 61, 22, 69syl3anc 1372 . . . . . . . . 9 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘𝑌) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌)))
7168, 70oveq12d 7417 . . . . . . . 8 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑌))))
7260, 66, 713eqtr4d 2779 . . . . . . 7 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)))
73 fveq1 6871 . . . . . . . 8 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (𝐹‘(𝑋 ++ 𝑌)))
74 fveq1 6871 . . . . . . . . 9 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘𝑋) = (𝐹𝑋))
75 fveq1 6871 . . . . . . . . 9 ((𝑆𝑓) = 𝐹 → ((𝑆𝑓)‘𝑌) = (𝐹𝑌))
7674, 75oveq12d 7417 . . . . . . . 8 ((𝑆𝑓) = 𝐹 → (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))
7773, 76eqeq12d 2750 . . . . . . 7 ((𝑆𝑓) = 𝐹 → (((𝑆𝑓)‘(𝑋 ++ 𝑌)) = (((𝑆𝑓)‘𝑋) ++ ((𝑆𝑓)‘𝑌)) ↔ (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
7872, 77syl5ibcom 245 . . . . . 6 ((𝑓 ∈ (𝑅m (mVR‘𝑇)) ∧ (𝑋𝑅𝑌𝑅)) → ((𝑆𝑓) = 𝐹 → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
7978ex 412 . . . . 5 (𝑓 ∈ (𝑅m (mVR‘𝑇)) → ((𝑋𝑅𝑌𝑅) → ((𝑆𝑓) = 𝐹 → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))))
8079com23 86 . . . 4 (𝑓 ∈ (𝑅m (mVR‘𝑇)) → ((𝑆𝑓) = 𝐹 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))))
8180rexlimiv 3132 . . 3 (∃𝑓 ∈ (𝑅m (mVR‘𝑇))(𝑆𝑓) = 𝐹 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
8214, 81syl 17 . 2 (𝐹 ∈ ran 𝑆 → ((𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌))))
83823impib 1116 1 ((𝐹 ∈ ran 𝑆𝑋𝑅𝑌𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹𝑋) ++ (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3457  cun 3922  wss 3924  c0 4306  ifcif 4498  cmpt 5198  ran crn 5652  cima 5654  ccom 5655  Fun wfun 6521  wf 6523  cfv 6527  (class class class)co 7399  m cmap 8834  pm cpm 8835  Word cword 14519   ++ cconcat 14575  ⟨“cs1 14600  Basecbs 17213  +gcplusg 17256   Σg cgsu 17439  Mndcmnd 18697  freeMndcfrmd 18810  mCNcmcn 35403  mVRcmvar 35404  mRExcmrex 35409  mRSubstcmrsub 35413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-map 8836  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-n0 12494  df-z 12581  df-uz 12845  df-fz 13514  df-fzo 13661  df-seq 14009  df-hash 14337  df-word 14520  df-concat 14576  df-s1 14601  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-0g 17440  df-gsum 17441  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18747  df-frmd 18812  df-mrex 35429  df-mrsub 35433
This theorem is referenced by:  elmrsubrn  35463  mrsubco  35464  mrsubvrs  35465
  Copyright terms: Public domain W3C validator