Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoa32 Structured version   Visualization version   GIF version

Theorem rngoa32 35633
Description: The addition operation of a ring is commutative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringgcl.1 𝐺 = (1st𝑅)
ringgcl.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoa32 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵))

Proof of Theorem rngoa32
StepHypRef Expression
1 ringgcl.1 . . 3 𝐺 = (1st𝑅)
21rngoablo 35626 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp)
3 ringgcl.2 . . 3 𝑋 = ran 𝐺
43ablo32 28431 . 2 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵))
52, 4sylan 583 1 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  ran crn 5525  cfv 6335  (class class class)co 7150  1st c1st 7691  AbelOpcablo 28426  RingOpscrngo 35612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fo 6341  df-fv 6343  df-ov 7153  df-1st 7693  df-2nd 7694  df-grpo 28375  df-ablo 28427  df-rngo 35613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator