Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomcl Structured version   Visualization version   GIF version

Theorem rngohomcl 36119
Description: Closure law for a ring homomorphism. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
rnghomf.1 𝐺 = (1st𝑅)
rnghomf.2 𝑋 = ran 𝐺
rnghomf.3 𝐽 = (1st𝑆)
rnghomf.4 𝑌 = ran 𝐽
Assertion
Ref Expression
rngohomcl (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ 𝑌)

Proof of Theorem rngohomcl
StepHypRef Expression
1 rnghomf.1 . . 3 𝐺 = (1st𝑅)
2 rnghomf.2 . . 3 𝑋 = ran 𝐺
3 rnghomf.3 . . 3 𝐽 = (1st𝑆)
4 rnghomf.4 . . 3 𝑌 = ran 𝐽
51, 2, 3, 4rngohomf 36118 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:𝑋𝑌)
65ffvelrnda 6956 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  ran crn 5590  cfv 6431  (class class class)co 7269  1st c1st 7820  RingOpscrngo 36046   RngHom crnghom 36112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-map 8598  df-rngohom 36115
This theorem is referenced by:  rngohomco  36126  keridl  36184
  Copyright terms: Public domain W3C validator