| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngohom1 | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism preserves 1. (Contributed by Jeff Madsen, 24-Jun-2011.) |
| Ref | Expression |
|---|---|
| rnghom1.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
| rnghom1.2 | ⊢ 𝑈 = (GId‘𝐻) |
| rnghom1.3 | ⊢ 𝐾 = (2nd ‘𝑆) |
| rnghom1.4 | ⊢ 𝑉 = (GId‘𝐾) |
| Ref | Expression |
|---|---|
| rngohom1 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑈) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . 5 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | rnghom1.1 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | eqid 2730 | . . . . 5 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 4 | rnghom1.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (1st ‘𝑆) = (1st ‘𝑆) | |
| 6 | rnghom1.3 | . . . . 5 ⊢ 𝐾 = (2nd ‘𝑆) | |
| 7 | eqid 2730 | . . . . 5 ⊢ ran (1st ‘𝑆) = ran (1st ‘𝑆) | |
| 8 | rnghom1.4 | . . . . 5 ⊢ 𝑉 = (GId‘𝐾) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | isrngohom 37966 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:ran (1st ‘𝑅)⟶ran (1st ‘𝑆) ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ ran (1st ‘𝑅)∀𝑦 ∈ ran (1st ‘𝑅)((𝐹‘(𝑥(1st ‘𝑅)𝑦)) = ((𝐹‘𝑥)(1st ‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |
| 10 | 9 | biimpa 476 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:ran (1st ‘𝑅)⟶ran (1st ‘𝑆) ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ ran (1st ‘𝑅)∀𝑦 ∈ ran (1st ‘𝑅)((𝐹‘(𝑥(1st ‘𝑅)𝑦)) = ((𝐹‘𝑥)(1st ‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))))) |
| 11 | 10 | simp2d 1143 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑈) = 𝑉) |
| 12 | 11 | 3impa 1109 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑈) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ran crn 5642 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 GIdcgi 30426 RingOpscrngo 37895 RingOpsHom crngohom 37961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-rngohom 37964 |
| This theorem is referenced by: rngohomco 37975 rngoisocnv 37982 |
| Copyright terms: Public domain | W3C validator |