Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohom1 Structured version   Visualization version   GIF version

Theorem rngohom1 37348
Description: A ring homomorphism preserves 1. (Contributed by Jeff Madsen, 24-Jun-2011.)
Hypotheses
Ref Expression
rnghom1.1 𝐻 = (2nd β€˜π‘…)
rnghom1.2 π‘ˆ = (GIdβ€˜π»)
rnghom1.3 𝐾 = (2nd β€˜π‘†)
rnghom1.4 𝑉 = (GIdβ€˜πΎ)
Assertion
Ref Expression
rngohom1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) β†’ (πΉβ€˜π‘ˆ) = 𝑉)

Proof of Theorem rngohom1
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . . . 5 (1st β€˜π‘…) = (1st β€˜π‘…)
2 rnghom1.1 . . . . 5 𝐻 = (2nd β€˜π‘…)
3 eqid 2726 . . . . 5 ran (1st β€˜π‘…) = ran (1st β€˜π‘…)
4 rnghom1.2 . . . . 5 π‘ˆ = (GIdβ€˜π»)
5 eqid 2726 . . . . 5 (1st β€˜π‘†) = (1st β€˜π‘†)
6 rnghom1.3 . . . . 5 𝐾 = (2nd β€˜π‘†)
7 eqid 2726 . . . . 5 ran (1st β€˜π‘†) = ran (1st β€˜π‘†)
8 rnghom1.4 . . . . 5 𝑉 = (GIdβ€˜πΎ)
91, 2, 3, 4, 5, 6, 7, 8isrngohom 37345 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:ran (1st β€˜π‘…)⟢ran (1st β€˜π‘†) ∧ (πΉβ€˜π‘ˆ) = 𝑉 ∧ βˆ€π‘₯ ∈ ran (1st β€˜π‘…)βˆ€π‘¦ ∈ ran (1st β€˜π‘…)((πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯)(1st β€˜π‘†)(πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦))))))
109biimpa 476 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) β†’ (𝐹:ran (1st β€˜π‘…)⟢ran (1st β€˜π‘†) ∧ (πΉβ€˜π‘ˆ) = 𝑉 ∧ βˆ€π‘₯ ∈ ran (1st β€˜π‘…)βˆ€π‘¦ ∈ ran (1st β€˜π‘…)((πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯)(1st β€˜π‘†)(πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦)))))
1110simp2d 1140 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) β†’ (πΉβ€˜π‘ˆ) = 𝑉)
12113impa 1107 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) β†’ (πΉβ€˜π‘ˆ) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  ran crn 5670  βŸΆwf 6532  β€˜cfv 6536  (class class class)co 7404  1st c1st 7969  2nd c2nd 7970  GIdcgi 30247  RingOpscrngo 37274   RingOpsHom crngohom 37340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-map 8821  df-rngohom 37343
This theorem is referenced by:  rngohomco  37354  rngoisocnv  37361
  Copyright terms: Public domain W3C validator