Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohom1 Structured version   Visualization version   GIF version

Theorem rngohom1 38018
Description: A ring homomorphism preserves 1. (Contributed by Jeff Madsen, 24-Jun-2011.)
Hypotheses
Ref Expression
rnghom1.1 𝐻 = (2nd𝑅)
rnghom1.2 𝑈 = (GId‘𝐻)
rnghom1.3 𝐾 = (2nd𝑆)
rnghom1.4 𝑉 = (GId‘𝐾)
Assertion
Ref Expression
rngohom1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹𝑈) = 𝑉)

Proof of Theorem rngohom1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . 5 (1st𝑅) = (1st𝑅)
2 rnghom1.1 . . . . 5 𝐻 = (2nd𝑅)
3 eqid 2731 . . . . 5 ran (1st𝑅) = ran (1st𝑅)
4 rnghom1.2 . . . . 5 𝑈 = (GId‘𝐻)
5 eqid 2731 . . . . 5 (1st𝑆) = (1st𝑆)
6 rnghom1.3 . . . . 5 𝐾 = (2nd𝑆)
7 eqid 2731 . . . . 5 ran (1st𝑆) = ran (1st𝑆)
8 rnghom1.4 . . . . 5 𝑉 = (GId‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8isrngohom 38015 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
109biimpa 476 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
1110simp2d 1143 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹𝑈) = 𝑉)
12113impa 1109 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹𝑈) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  GIdcgi 30470  RingOpscrngo 37944   RingOpsHom crngohom 38010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-rngohom 38013
This theorem is referenced by:  rngohomco  38024  rngoisocnv  38031
  Copyright terms: Public domain W3C validator