| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngohom1 | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism preserves 1. (Contributed by Jeff Madsen, 24-Jun-2011.) |
| Ref | Expression |
|---|---|
| rnghom1.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
| rnghom1.2 | ⊢ 𝑈 = (GId‘𝐻) |
| rnghom1.3 | ⊢ 𝐾 = (2nd ‘𝑆) |
| rnghom1.4 | ⊢ 𝑉 = (GId‘𝐾) |
| Ref | Expression |
|---|---|
| rngohom1 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑈) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | rnghom1.1 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | eqid 2729 | . . . . 5 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 4 | rnghom1.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (1st ‘𝑆) = (1st ‘𝑆) | |
| 6 | rnghom1.3 | . . . . 5 ⊢ 𝐾 = (2nd ‘𝑆) | |
| 7 | eqid 2729 | . . . . 5 ⊢ ran (1st ‘𝑆) = ran (1st ‘𝑆) | |
| 8 | rnghom1.4 | . . . . 5 ⊢ 𝑉 = (GId‘𝐾) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | isrngohom 37949 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:ran (1st ‘𝑅)⟶ran (1st ‘𝑆) ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ ran (1st ‘𝑅)∀𝑦 ∈ ran (1st ‘𝑅)((𝐹‘(𝑥(1st ‘𝑅)𝑦)) = ((𝐹‘𝑥)(1st ‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |
| 10 | 9 | biimpa 476 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:ran (1st ‘𝑅)⟶ran (1st ‘𝑆) ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ ran (1st ‘𝑅)∀𝑦 ∈ ran (1st ‘𝑅)((𝐹‘(𝑥(1st ‘𝑅)𝑦)) = ((𝐹‘𝑥)(1st ‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))))) |
| 11 | 10 | simp2d 1143 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑈) = 𝑉) |
| 12 | 11 | 3impa 1109 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑈) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ran crn 5620 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 GIdcgi 30434 RingOpscrngo 37878 RingOpsHom crngohom 37944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-rngohom 37947 |
| This theorem is referenced by: rngohomco 37958 rngoisocnv 37965 |
| Copyright terms: Public domain | W3C validator |