Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohom1 Structured version   Visualization version   GIF version

Theorem rngohom1 36836
Description: A ring homomorphism preserves 1. (Contributed by Jeff Madsen, 24-Jun-2011.)
Hypotheses
Ref Expression
rnghom1.1 𝐻 = (2nd β€˜π‘…)
rnghom1.2 π‘ˆ = (GIdβ€˜π»)
rnghom1.3 𝐾 = (2nd β€˜π‘†)
rnghom1.4 𝑉 = (GIdβ€˜πΎ)
Assertion
Ref Expression
rngohom1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (πΉβ€˜π‘ˆ) = 𝑉)

Proof of Theorem rngohom1
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (1st β€˜π‘…) = (1st β€˜π‘…)
2 rnghom1.1 . . . . 5 𝐻 = (2nd β€˜π‘…)
3 eqid 2733 . . . . 5 ran (1st β€˜π‘…) = ran (1st β€˜π‘…)
4 rnghom1.2 . . . . 5 π‘ˆ = (GIdβ€˜π»)
5 eqid 2733 . . . . 5 (1st β€˜π‘†) = (1st β€˜π‘†)
6 rnghom1.3 . . . . 5 𝐾 = (2nd β€˜π‘†)
7 eqid 2733 . . . . 5 ran (1st β€˜π‘†) = ran (1st β€˜π‘†)
8 rnghom1.4 . . . . 5 𝑉 = (GIdβ€˜πΎ)
91, 2, 3, 4, 5, 6, 7, 8isrngohom 36833 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:ran (1st β€˜π‘…)⟢ran (1st β€˜π‘†) ∧ (πΉβ€˜π‘ˆ) = 𝑉 ∧ βˆ€π‘₯ ∈ ran (1st β€˜π‘…)βˆ€π‘¦ ∈ ran (1st β€˜π‘…)((πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯)(1st β€˜π‘†)(πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦))))))
109biimpa 478 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (𝐹:ran (1st β€˜π‘…)⟢ran (1st β€˜π‘†) ∧ (πΉβ€˜π‘ˆ) = 𝑉 ∧ βˆ€π‘₯ ∈ ran (1st β€˜π‘…)βˆ€π‘¦ ∈ ran (1st β€˜π‘…)((πΉβ€˜(π‘₯(1st β€˜π‘…)𝑦)) = ((πΉβ€˜π‘₯)(1st β€˜π‘†)(πΉβ€˜π‘¦)) ∧ (πΉβ€˜(π‘₯𝐻𝑦)) = ((πΉβ€˜π‘₯)𝐾(πΉβ€˜π‘¦)))))
1110simp2d 1144 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (πΉβ€˜π‘ˆ) = 𝑉)
12113impa 1111 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) β†’ (πΉβ€˜π‘ˆ) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  ran crn 5678  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974  GIdcgi 29743  RingOpscrngo 36762   RngHom crnghom 36828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-rngohom 36831
This theorem is referenced by:  rngohomco  36842  rngoisocnv  36849
  Copyright terms: Public domain W3C validator