| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngohom1 | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism preserves 1. (Contributed by Jeff Madsen, 24-Jun-2011.) |
| Ref | Expression |
|---|---|
| rnghom1.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
| rnghom1.2 | ⊢ 𝑈 = (GId‘𝐻) |
| rnghom1.3 | ⊢ 𝐾 = (2nd ‘𝑆) |
| rnghom1.4 | ⊢ 𝑉 = (GId‘𝐾) |
| Ref | Expression |
|---|---|
| rngohom1 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑈) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . . 5 ⊢ (1st ‘𝑅) = (1st ‘𝑅) | |
| 2 | rnghom1.1 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | eqid 2736 | . . . . 5 ⊢ ran (1st ‘𝑅) = ran (1st ‘𝑅) | |
| 4 | rnghom1.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (1st ‘𝑆) = (1st ‘𝑆) | |
| 6 | rnghom1.3 | . . . . 5 ⊢ 𝐾 = (2nd ‘𝑆) | |
| 7 | eqid 2736 | . . . . 5 ⊢ ran (1st ‘𝑆) = ran (1st ‘𝑆) | |
| 8 | rnghom1.4 | . . . . 5 ⊢ 𝑉 = (GId‘𝐾) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | isrngohom 37994 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:ran (1st ‘𝑅)⟶ran (1st ‘𝑆) ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ ran (1st ‘𝑅)∀𝑦 ∈ ran (1st ‘𝑅)((𝐹‘(𝑥(1st ‘𝑅)𝑦)) = ((𝐹‘𝑥)(1st ‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |
| 10 | 9 | biimpa 476 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:ran (1st ‘𝑅)⟶ran (1st ‘𝑆) ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ ran (1st ‘𝑅)∀𝑦 ∈ ran (1st ‘𝑅)((𝐹‘(𝑥(1st ‘𝑅)𝑦)) = ((𝐹‘𝑥)(1st ‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))))) |
| 11 | 10 | simp2d 1143 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑈) = 𝑉) |
| 12 | 11 | 3impa 1109 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹‘𝑈) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ran crn 5660 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 GIdcgi 30476 RingOpscrngo 37923 RingOpsHom crngohom 37989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-rngohom 37992 |
| This theorem is referenced by: rngohomco 38003 rngoisocnv 38010 |
| Copyright terms: Public domain | W3C validator |