Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohom1 Structured version   Visualization version   GIF version

Theorem rngohom1 37430
Description: A ring homomorphism preserves 1. (Contributed by Jeff Madsen, 24-Jun-2011.)
Hypotheses
Ref Expression
rnghom1.1 𝐻 = (2nd𝑅)
rnghom1.2 𝑈 = (GId‘𝐻)
rnghom1.3 𝐾 = (2nd𝑆)
rnghom1.4 𝑉 = (GId‘𝐾)
Assertion
Ref Expression
rngohom1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹𝑈) = 𝑉)

Proof of Theorem rngohom1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2727 . . . . 5 (1st𝑅) = (1st𝑅)
2 rnghom1.1 . . . . 5 𝐻 = (2nd𝑅)
3 eqid 2727 . . . . 5 ran (1st𝑅) = ran (1st𝑅)
4 rnghom1.2 . . . . 5 𝑈 = (GId‘𝐻)
5 eqid 2727 . . . . 5 (1st𝑆) = (1st𝑆)
6 rnghom1.3 . . . . 5 𝐾 = (2nd𝑆)
7 eqid 2727 . . . . 5 ran (1st𝑆) = ran (1st𝑆)
8 rnghom1.4 . . . . 5 𝑉 = (GId‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8isrngohom 37427 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ↔ (𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
109biimpa 476 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
1110simp2d 1141 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹𝑈) = 𝑉)
12113impa 1108 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsHom 𝑆)) → (𝐹𝑈) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  ran crn 5673  wf 6538  cfv 6542  (class class class)co 7414  1st c1st 7985  2nd c2nd 7986  GIdcgi 30293  RingOpscrngo 37356   RingOpsHom crngohom 37422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8840  df-rngohom 37425
This theorem is referenced by:  rngohomco  37436  rngoisocnv  37443
  Copyright terms: Public domain W3C validator